Magnetic phase boundaries; Crystal-field theory and spin Hamiltonians; Magnetic anisotropy
Abstract :
[en] We present a comprehensive experimental and theoretical study of the electronic and magnetic properties of two quasi-two-dimensional (2D) honeycomb-lattice monoclinic compounds A3Ni2SbO6 (A=Li, Na). Magnetic susceptibility and specific heat data are consistent with the onset of antiferromagnetic (AFM) long range order at low temperatures with Néel temperatures ~ 14 and 16 K for Li3Ni2SbO6 and Na3Ni2SbO6, respectively. The effective magnetic moments of 4.3 Bohr magnetons/f.u. (Li3Ni2SbO6) and 4.4 Bohr magnetons/f.u. (Na3Ni2SbO6) indicate that Ni2+ is in a high-spin configuration (S=1). The temperature dependence of the inverse magnetic susceptibility follows the Curie-Weiss law in the high-temperature region and shows positive values of the Weiss temperature ~ 8 K (Li3Ni2SbO6) and ~12 K (Na3Ni2SbO6) pointing to the presence of non-negligible ferromagnetic interactions, although the system orders AFM at low temperatures. In addition, the magnetization curves reveal a field-induced (spin-flop type) transition below TN that can be related to the magnetocrystalline anisotropy in these systems. These observations are in agreement with density functional theory calculations, which show that both antiferromagnetic and ferromagnetic intralayer spin exchange couplings between Ni2+ ions are present in the honeycomb planes supporting a zigzag antiferromagnetic ground state. Based on our experimental measurements and theoretical calculations we propose magnetic phase diagrams for the two compounds.
Disciplines :
Physics
Author, co-author :
Zvereva, E.A.; Lomonosov Moscow State University - MSU
Stratan, M.I.; Lomonosov Moscow State University - MSU
Ovchenkov, Y.A.; Lomonosov Moscow State University - MSU
Nalbandyan, V.B.; Southern Federal University, 344090 Rostov-on-Don, Russia
Lin, J.-Y.; National Chiao Tung University, Hsinchu, Taiwan
Vavilova, E.L.; Zavoisky Physical-Technical Institute (ZPhTI) of the Kazan Scientific Center of the Russian Academy of Sciences
Iakovleva, M.F.; Zavoisky Physical-Technical Institute (ZPhTI) of the Kazan Scientific Center of the Russian Academy of Sciences,
Abdel-Hafiez, M.; Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Rd., Shanghai
Silhanek, Alejandro ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Chen, X.-J.; Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Rd., Shanghai
Stroppa, A.; CNR-SPIN, L'Aquila, Italy
Picozzi, S.; CNR-SPIN, L'Aquila, Italy
Jeschke, H.O.; Institut für Theoretische Physik, Goethe-Universität Frankfurt
Valentí, R.; Institut für Theoretische Physik, Goethe-Universität Frankfurt
Vasiliev, A.N.; Lomonosov Moscow State University - MSU
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
B. Xu, D. Qian, Z. Wang, and Y. S. Meng, Mater. Sci. Eng. R 73, 51 (2012). 10.1016/j.mser.2012.05.003
J. B. Goodenough, J. Solid State Electrochem. 16, 2019 (2012). 10.1007/s10008-012-1751-2
I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997). 10.1103/PhysRevB.56.R12685
M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal Jr., R. J. Cava, and N. P. Ong, Nat. Mater. 5, 537 (2006). 10.1038/nmat1669
K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003). 10.1038/nature01450
J. D. Jorgensen, M. Avdeev, D. G. Hinks, J. C. Burley, and S. Short, Phys. Rev. B 68, 214517 (2003). 10.1103/PhysRevB.68.214517
C. Greaves and S. M. A. Katib, Mater. Res. Bull. 25, 1175 (1990). 10.1016/0025-5408(90)90148-U
G. C. Mather, C. Dussarrat, J. Etourneau, and A. R. West, J. Mater. Chem. 10, 2219 (2000). 10.1039/b000817f
R. Nagarajan, S. Uma, M. K. Jayaraj, J. Tate, and A. W. Sleight, Solid State Sci. 4, 787 (2002). 10.1016/S1293-2558(02)01295-5
J. Xu, A. Assoud, N. Soheilnia, S. Derakhshan, H. L. Cuthbert, J. E. Greedan, M. H. Whangbo, and H. Kleinke, Inorg. Chem. 44, 5042 (2005). 10.1021/ic0502832
S. Derakhshan, H. L. Cuthbert, J. E. Greedan, B. Rahaman, and T. Saha-Dasgupta, Phys. Rev. B 76, 104403 (2007). 10.1103/PhysRevB.76.104403
Y. Miura, R. Hirai, Y. Kobayashi, and M. Sato, J. Phys. Soc. Japn. 75, 084707 (2006). 10.1143/JPSJ.75.084707
Y. Miura, R. Hirai, T. Fujita, Y. Kobayashi, and M. Sato, J. Magn. Magn. Mater. 310, e389 (2007). 10.1016/j.jmmm.2006.10.365
Y. Miura, Y. Yasui, T. Moyoshi, M. Sato, and K. Kakurai, J. Phys. Soc. Jpn. 77, 104709 (2008). 10.1143/JPSJ.77.104709
C. N. Kuo, T. S. Jian, and C. S. Lue, J. Alloys Comp. 531, 1 (2012). 10.1016/j.jallcom.2012.02.121
O. A. Smirnova, V. B. Nalbandyan, A. A. Petrenko, and M. Avdeev, J. Solid State Chem. 178, 1165 (2005). 10.1016/j.jssc.2005.02.002
W. Schmidt, R. Berthelot, A. W. Sleight, and M. A. Subramanian, J. Solid State Chem. 201, 178 (2013). 10.1016/j.jssc.2013.02.035
R. Berthelot, W. Schmidt, A. W. Sleight, and M. A. Subramanian, J. Solid State Chem. 196, 225 (2012). 10.1016/j.jssc.2012.06.022
L. Viciu, Q. Huang, E. Morosan, H. W. Zandbergen, N. I. Greenbaum, T. McQueen, and R. J. Cava, J. Solid State Chem. 180, 1060 (2007). 10.1016/j.jssc.2007.01.002
E. A. Zvereva, M. A. Evstigneeva, V. B. Nalbandyan, O. A. Savelieva, S. A. Ibragimov, O. S. Volkova, L. I. Medvedeva, A. N. Vasiliev, R. Klingeler, and B. Buechner, Dalton Trans. 41, 572 (2012). 10.1039/C1DT11322D
R. Berthelot, W. Schmidt, S. Muir, J. Eilertsen, L. Etienne, A. W. Sleight, and M. A. Subramanian, Inorg. Chem. 51, 5377 (2012). 10.1021/ic300351t
V. V. Politaev, V. B. Nalbandyan, A. A. Petrenko, I. L. Shukaev, V. A. Volotchaev, and B. S. Medvedev, J. Solid State Chem. 183, 684 (2010). 10.1016/j.jssc.2009.12.002
M. A. Evstigneeva, V. B. Nalbandyan, A. A. Petrenko, B. S. Medvedev, and A. A. Kataev, Chem. Mater. 23, 1174 (2011). 10.1021/cm102629g
V. Kumar, N. Bhardwaj, N. Tomar, V. Thakral, and S. Uma, Inorg. Chem. 51, 10471 (2012). 10.1021/ic301125n
V. Kumar, A. Gupta, and S. Uma, Dalton Trans. 42, 14992 (2013). 10.1039/c3dt51604k
V. B. Nalbandyan, M. Avdeev, and M. A. Evstigneeva, J. Solid State Chem. 199, 62 (2013). 10.1016/j.jssc.2012.11.027
V. B. Nalbandyan, A. A. Petrenko, and M. A. Evstigneeva, Solid State Ionics 233, 7 (2013). 10.1016/j.ssi.2012.12.002
E. A. Zvereva, O. A. Savelieva, Ya. D. Titov, M. A. Evstigneeva, V. B. Nalbandyan, C. N. Kao, J.-Y. Lin, I. A. Presniakov, A. V. Sobolev, S. A. Ibragimov, M. Abdel-Hafiez, Yu. Krupskaya, C. Jähne, G. Tan, R. Klingeler, B. Büchner, and A. N. Vasiliev, Dalton Trans. 42, 1550 (2013). 10.1039/C2DT31938A
J. H. Roudebush and R. J. Cava, J. Solid State Chem. 204, 178 (2013). 10.1016/j.jssc.2013.05.020
E. Climent-Pascual, P. Norby, N. H. Andersen, P. W. Stephens, H. W. Zandbergen, J. Larsen, and R. J. Cava, Inorg. Chem. 51, 557 (2012). 10.1021/ic202066n
J. H. Roudebush, N. H. Andersen, R. Ramlau, V. O. Garlea, R. Toft-Petersen, P. Norby, R. Schneider, J. N. Hay, and R. J. Cava, Inorg. Chem. 52, 6083 (2013). 10.1021/ic400415h
A. Gupta, C. B. Mullins, and J. B. Goodenough, J. Power Sources 243, 817 (2013). 10.1016/j.jpowsour.2013.06.073
E. M. Seibel, J. H. Roudebush, H. Wu, Q. Huang, M. N. Ali, H. Ji, and R. J. Cava, Inorg. Chem. 52, 13605 (2013). 10.1021/ic402131e
W. Schmidt, R. Berthelot, L. Etienne, A. Wattiaux, and M. A. Subramanian, Mater. Res. Bull. 50, 292 (2014). 10.1016/j.materresbull.2013.10.049
M. Schmitt, O. Janson, S. Golbs, M. Schmidt, W. Schnelle, J. Richter, and H. Rosner, Phys. Rev. B 89, 174403 (2014). 10.1103/PhysRevB.89.174403
N. Bhardwaj, A. Gupta, and S. Uma, Dalton Trans. 43, 12050 (2014). 10.1039/C4DT00887A
A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti, Phys. Rev. B 81, 214419 (2010). 10.1103/PhysRevB.81.214419
P. H. Y. Li, R. F. Bishop, D. J. J. Farnell, and C. E. Campbell, Phys. Rev. B 86, 144404 (2012). 10.1103/PhysRevB.86.144404
J. Ma, S.-H. Bo, L. Wu, Y. Zhu, C. P. Grey, and P. G. Khalifah, Chem. Mater. 27, 2387 (2015). 10.1021/cm504339y
K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999). 10.1103/PhysRevB.59.1743
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 10.1103/PhysRevB.54.11169
K. Foyevtsova, I. Opahle, Y.-Z. Zhang, H. O. Jeschke, and R. Valentí, Phys. Rev. B 83, 125126 (2011). 10.1103/PhysRevB.83.125126
U. Tutsch, B. Wolf, S. Wessel, L. Postulka, Y. Tsui, H. O. Jeschke, I. Opahle, T. Saha-Dasgupta, R. Valentí, A. Brühl, K. Remović-Langer, T. Kretz, H.-W. Lerner, M. Wagner, and M. Lang, Nature Comm. 5, 5169 (2014). 10.1038/ncomms6169
J. P. Joshi and S. V. Bhat, J. Magn. Res. 168, 284 (2004). 10.1016/j.jmr.2004.03.018
H.-A. Krug von Nidda, L. E. Svistov, M. V. Eremin, R. M. Eremina, A. Loidl, V. Kataev, A. Validov, A. Prokofiev, and W. Aßmus, Phys. Rev. B 65, 134445 (2002). 10.1103/PhysRevB.65.134445
J. M. Law, P. Reuvekamp, R. Glaum, C. Lee, J. Kang, M.-H. Whangbo, and R. K. Kremer, Phys. Rev. B 84, 014426 (2011). 10.1103/PhysRevB.84.014426
V. B. Nalbandyan, E. A. Zvereva, G. E. Yalovega, I. L. Shukaev, A. P. Ryzhakova, A. A. Guda, A. Stroppa, S. Picozzi, A. N. Vasiliev, and M.-H. Whangbo, Inorg. Chem. 52, 11850 (2013). 10.1021/ic401391b
E. A. Zvereva, V. B. Nalbandyan, M. A. Evstigneeva, H.-J. Koo, M.-H. Whangbo, A. V. Ushakov, B. S. Medvedev, L. I. Medvedeva, N. A. Gridina, G. E. Yalovega, A. V. Churikov, A. N. Vasiliev, and B. Büchner, J. Solid State Chem. 225, 89 (2015). 10.1016/j.jssc.2014.12.003
L. J. de Jongh and A. R. Miedema, Adv. Phys. 23, 1 (1974). 10.1080/00018739700101558
J. E. Greedan, J. Mater. Chem. 11, 37 (2001). 10.1039/b003682j
K. Kawasaki, Prog. Theor. Phys. 39, 285 (1968). 10.1143/PTP.39.285
K. Kawasaki, Phys. Lett. A 26, 543 (1968). 10.1016/0375-9601(68)90536-7
H. Mori and K. Kawasaki, Prog. Theor. Phys. 28, 971 (1962). 10.1143/PTP.28.971
D. L. Huber, Phys. Rev. B 6, 3180 (1972). 10.1103/PhysRevB.6.3180
P. M. Richards and M. B. Salamon, Phys. Rev. B 9, 32 (1974). 10.1103/PhysRevB.9.32
R. D. Willett and F. Waldner, J. Appl. Phys. 53, 2680 (1982). 10.1063/1.330892
R. D. Willett and R. Wong, J. Magn. Res. 42, 446 (1981).
T. G. Castner Jr. and M. S. Seehra, Phys. Rev. B 4, 38 (1971). 10.1103/PhysRevB.4.38
T. G. Castner and M. S. Seehra, Phys. Rev. B 47, 578 (1993). 10.1103/PhysRevB.47.578
M. Heinrich, H.-A. Krug von Nidda, A. Loidl, N. Rogado, and R. J. Cava, Phys. Rev. Lett. 91, 137601 (2003). 10.1103/PhysRevLett.91.137601
A. Zorko, F. Bert, A. Ozarowski, J. van Tol, D. Boldrin, A. S. Wills, and P. Mendels, Phys. Rev. B 88, 144419 (2013). 10.1103/PhysRevB.88.144419
D. L. Huber and M. S. Seehra, J. Phys. Chem. Solids 36, 723 (1975). 10.1016/0022-3697(75)90094-3
M. S. Seehra, M. M. Ibrahim, V. S. Babu, and G. Srinivasan, J. Phys.: Condens. Matter 8, 11283 (1996). 10.1088/0953-8984/8/50/048
A. Zorko, D. Arčon, H. van Tol, L. C. Brunel, and H. Kageyama, Phys. Rev. B 69, 174420 (2004). 10.1103/PhysRevB.69.174420
J. H. Roudebush, G. Sahasrabudhe, S. L. Bergman, and R. J. Cava, Inorg. Chem. 54, 3203 (2015). 10.1021/ic502790n
M. E. Fisher, Proc. Roy. Soc. (London) A 254, 66 (1960). 10.1098/rspa.1960.0005
M. E. Fisher, Phil. Mag. 7, 1731 (1962). 10.1080/14786436208213705
R. L. Carlin, Magnetochemistry (Springer-Verlag, Berlin, 1986).
A. Tari, The Specific Heat of Matter at Low Temperature, (Imperial College Press, London, 2003).
H. Benner and J. P. Boucher, Spin Dynamics in the Paramagnetic Regime: NMR and EPR in Two-Dimensional Magnets-"Magnetic Properties of Layered Transition Metal Compounds", edited by L. J. de Jongh (Springer, Netherlands, 1990), p. 323.
M. Yehia, E. Vavilova, A. Möller, T. Taetz, U. Löw, R. Klingeler, V. Kataev, and B. Büchner, Phys. Rev. B 81, 060414 (2010). 10.1103/PhysRevB.81.060414
C. P. Slichter, Principles of Magnetic Resonance, Springer Series in Solid-State Sciences 1, Third Edition (Springer-Verlag, Berlin, Heidelberg, New York, 1990).
Y. Yamada and A. Sakata, J. Phys. Soc. Jpn. 55, 1751 (1986). 10.1143/JPSJ.55.1751
Y. Fujii, H. Kikuchi, T. Arai, Y. Tanabe, K. Kindo, and A. Matsuo, J. Phys.: Conf. Series 200, 022009 (2010). 10.1088/1742-6596/200/2/022009
Y. Ideta, Y. Kawasaki, Y. Kishimoto, T. Ohno, Y. Michihiro, Z. He, Y. Ueda, and M. Itoh, Phys. Rev. B 86, 094433 (2012). 10.1103/PhysRevB.86.094433
Note, however, that the given value actually corresponds to a sum of interlayer couplings (Equation presented), as more effort would be required to distinguish the interlayer couplings. Considering the size compared to (Equation presented) and (Equation presented) however, this is not necessary.
A. Lohmann, H.-J. Schmidt, and J. Richter, Phys. Rev. B 89, 014415 (2014). 10.1103/PhysRevB.89.014415
M. D. Watson, A. McCollam, S. F. Blake, D. Vignolles, L. Drigo, I. I. Mazin, D. Guterding, H. O. Jeschke, R. Valentí, N. Ni, R. Cava, and A. I. Coldea, Phys. Rev. B 89, 205136 (2014). 10.1103/PhysRevB.89.205136
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.