Magnetic phase boundaries; Crystal-field theory and spin Hamiltonians; Magnetic anisotropy
Abstract :
[en] We present a comprehensive experimental and theoretical study of the electronic and magnetic properties of two quasi-two-dimensional (2D) honeycomb-lattice monoclinic compounds A3Ni2SbO6 (A=Li, Na). Magnetic susceptibility and specific heat data are consistent with the onset of antiferromagnetic (AFM) long range order at low temperatures with Néel temperatures ~ 14 and 16 K for Li3Ni2SbO6 and Na3Ni2SbO6, respectively. The effective magnetic moments of 4.3 Bohr magnetons/f.u. (Li3Ni2SbO6) and 4.4 Bohr magnetons/f.u. (Na3Ni2SbO6) indicate that Ni2+ is in a high-spin configuration (S=1). The temperature dependence of the inverse magnetic susceptibility follows the Curie-Weiss law in the high-temperature region and shows positive values of the Weiss temperature ~ 8 K (Li3Ni2SbO6) and ~12 K (Na3Ni2SbO6) pointing to the presence of non-negligible ferromagnetic interactions, although the system orders AFM at low temperatures. In addition, the magnetization curves reveal a field-induced (spin-flop type) transition below TN that can be related to the magnetocrystalline anisotropy in these systems. These observations are in agreement with density functional theory calculations, which show that both antiferromagnetic and ferromagnetic intralayer spin exchange couplings between Ni2+ ions are present in the honeycomb planes supporting a zigzag antiferromagnetic ground state. Based on our experimental measurements and theoretical calculations we propose magnetic phase diagrams for the two compounds.
Disciplines :
Physics
Author, co-author :
Zvereva, E.A.; Lomonosov Moscow State University - MSU
Stratan, M.I.; Lomonosov Moscow State University - MSU
Ovchenkov, Y.A.; Lomonosov Moscow State University - MSU
Nalbandyan, V.B.; Southern Federal University, 344090 Rostov-on-Don, Russia
Lin, J.-Y.; National Chiao Tung University, Hsinchu, Taiwan
Vavilova, E.L.; Zavoisky Physical-Technical Institute (ZPhTI) of the Kazan Scientific Center of the Russian Academy of Sciences
Iakovleva, M.F.; Zavoisky Physical-Technical Institute (ZPhTI) of the Kazan Scientific Center of the Russian Academy of Sciences,
Abdel-Hafiez, M.; Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Rd., Shanghai
Silhanek, Alejandro ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Chen, X.-J.; Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Rd., Shanghai
Stroppa, A.; CNR-SPIN, L'Aquila, Italy
Picozzi, S.; CNR-SPIN, L'Aquila, Italy
Jeschke, H.O.; Institut für Theoretische Physik, Goethe-Universität Frankfurt
Valentí, R.; Institut für Theoretische Physik, Goethe-Universität Frankfurt
Vasiliev, A.N.; Lomonosov Moscow State University - MSU
B. Xu, D. Qian, Z. Wang, and Y. S. Meng, Mater. Sci. Eng. R 73, 51 (2012). 10.1016/j.mser.2012.05.003
J. B. Goodenough, J. Solid State Electrochem. 16, 2019 (2012). 10.1007/s10008-012-1751-2
I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997). 10.1103/PhysRevB.56.R12685
M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal Jr., R. J. Cava, and N. P. Ong, Nat. Mater. 5, 537 (2006). 10.1038/nmat1669
K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003). 10.1038/nature01450
J. D. Jorgensen, M. Avdeev, D. G. Hinks, J. C. Burley, and S. Short, Phys. Rev. B 68, 214517 (2003). 10.1103/PhysRevB.68.214517
C. Greaves and S. M. A. Katib, Mater. Res. Bull. 25, 1175 (1990). 10.1016/0025-5408(90)90148-U
G. C. Mather, C. Dussarrat, J. Etourneau, and A. R. West, J. Mater. Chem. 10, 2219 (2000). 10.1039/b000817f
R. Nagarajan, S. Uma, M. K. Jayaraj, J. Tate, and A. W. Sleight, Solid State Sci. 4, 787 (2002). 10.1016/S1293-2558(02)01295-5
J. Xu, A. Assoud, N. Soheilnia, S. Derakhshan, H. L. Cuthbert, J. E. Greedan, M. H. Whangbo, and H. Kleinke, Inorg. Chem. 44, 5042 (2005). 10.1021/ic0502832
S. Derakhshan, H. L. Cuthbert, J. E. Greedan, B. Rahaman, and T. Saha-Dasgupta, Phys. Rev. B 76, 104403 (2007). 10.1103/PhysRevB.76.104403
Y. Miura, R. Hirai, Y. Kobayashi, and M. Sato, J. Phys. Soc. Japn. 75, 084707 (2006). 10.1143/JPSJ.75.084707
Y. Miura, R. Hirai, T. Fujita, Y. Kobayashi, and M. Sato, J. Magn. Magn. Mater. 310, e389 (2007). 10.1016/j.jmmm.2006.10.365
Y. Miura, Y. Yasui, T. Moyoshi, M. Sato, and K. Kakurai, J. Phys. Soc. Jpn. 77, 104709 (2008). 10.1143/JPSJ.77.104709
C. N. Kuo, T. S. Jian, and C. S. Lue, J. Alloys Comp. 531, 1 (2012). 10.1016/j.jallcom.2012.02.121
O. A. Smirnova, V. B. Nalbandyan, A. A. Petrenko, and M. Avdeev, J. Solid State Chem. 178, 1165 (2005). 10.1016/j.jssc.2005.02.002
W. Schmidt, R. Berthelot, A. W. Sleight, and M. A. Subramanian, J. Solid State Chem. 201, 178 (2013). 10.1016/j.jssc.2013.02.035
R. Berthelot, W. Schmidt, A. W. Sleight, and M. A. Subramanian, J. Solid State Chem. 196, 225 (2012). 10.1016/j.jssc.2012.06.022
L. Viciu, Q. Huang, E. Morosan, H. W. Zandbergen, N. I. Greenbaum, T. McQueen, and R. J. Cava, J. Solid State Chem. 180, 1060 (2007). 10.1016/j.jssc.2007.01.002
E. A. Zvereva, M. A. Evstigneeva, V. B. Nalbandyan, O. A. Savelieva, S. A. Ibragimov, O. S. Volkova, L. I. Medvedeva, A. N. Vasiliev, R. Klingeler, and B. Buechner, Dalton Trans. 41, 572 (2012). 10.1039/C1DT11322D
R. Berthelot, W. Schmidt, S. Muir, J. Eilertsen, L. Etienne, A. W. Sleight, and M. A. Subramanian, Inorg. Chem. 51, 5377 (2012). 10.1021/ic300351t
V. V. Politaev, V. B. Nalbandyan, A. A. Petrenko, I. L. Shukaev, V. A. Volotchaev, and B. S. Medvedev, J. Solid State Chem. 183, 684 (2010). 10.1016/j.jssc.2009.12.002
M. A. Evstigneeva, V. B. Nalbandyan, A. A. Petrenko, B. S. Medvedev, and A. A. Kataev, Chem. Mater. 23, 1174 (2011). 10.1021/cm102629g
V. Kumar, N. Bhardwaj, N. Tomar, V. Thakral, and S. Uma, Inorg. Chem. 51, 10471 (2012). 10.1021/ic301125n
V. Kumar, A. Gupta, and S. Uma, Dalton Trans. 42, 14992 (2013). 10.1039/c3dt51604k
V. B. Nalbandyan, M. Avdeev, and M. A. Evstigneeva, J. Solid State Chem. 199, 62 (2013). 10.1016/j.jssc.2012.11.027
V. B. Nalbandyan, A. A. Petrenko, and M. A. Evstigneeva, Solid State Ionics 233, 7 (2013). 10.1016/j.ssi.2012.12.002
E. A. Zvereva, O. A. Savelieva, Ya. D. Titov, M. A. Evstigneeva, V. B. Nalbandyan, C. N. Kao, J.-Y. Lin, I. A. Presniakov, A. V. Sobolev, S. A. Ibragimov, M. Abdel-Hafiez, Yu. Krupskaya, C. Jähne, G. Tan, R. Klingeler, B. Büchner, and A. N. Vasiliev, Dalton Trans. 42, 1550 (2013). 10.1039/C2DT31938A
J. H. Roudebush and R. J. Cava, J. Solid State Chem. 204, 178 (2013). 10.1016/j.jssc.2013.05.020
E. Climent-Pascual, P. Norby, N. H. Andersen, P. W. Stephens, H. W. Zandbergen, J. Larsen, and R. J. Cava, Inorg. Chem. 51, 557 (2012). 10.1021/ic202066n
J. H. Roudebush, N. H. Andersen, R. Ramlau, V. O. Garlea, R. Toft-Petersen, P. Norby, R. Schneider, J. N. Hay, and R. J. Cava, Inorg. Chem. 52, 6083 (2013). 10.1021/ic400415h
A. Gupta, C. B. Mullins, and J. B. Goodenough, J. Power Sources 243, 817 (2013). 10.1016/j.jpowsour.2013.06.073
E. M. Seibel, J. H. Roudebush, H. Wu, Q. Huang, M. N. Ali, H. Ji, and R. J. Cava, Inorg. Chem. 52, 13605 (2013). 10.1021/ic402131e
W. Schmidt, R. Berthelot, L. Etienne, A. Wattiaux, and M. A. Subramanian, Mater. Res. Bull. 50, 292 (2014). 10.1016/j.materresbull.2013.10.049
M. Schmitt, O. Janson, S. Golbs, M. Schmidt, W. Schnelle, J. Richter, and H. Rosner, Phys. Rev. B 89, 174403 (2014). 10.1103/PhysRevB.89.174403
N. Bhardwaj, A. Gupta, and S. Uma, Dalton Trans. 43, 12050 (2014). 10.1039/C4DT00887A
A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti, Phys. Rev. B 81, 214419 (2010). 10.1103/PhysRevB.81.214419
P. H. Y. Li, R. F. Bishop, D. J. J. Farnell, and C. E. Campbell, Phys. Rev. B 86, 144404 (2012). 10.1103/PhysRevB.86.144404
J. Ma, S.-H. Bo, L. Wu, Y. Zhu, C. P. Grey, and P. G. Khalifah, Chem. Mater. 27, 2387 (2015). 10.1021/cm504339y
K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999). 10.1103/PhysRevB.59.1743
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). 10.1103/PhysRevLett.77.3865
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996). 10.1103/PhysRevB.54.11169
K. Foyevtsova, I. Opahle, Y.-Z. Zhang, H. O. Jeschke, and R. Valentí, Phys. Rev. B 83, 125126 (2011). 10.1103/PhysRevB.83.125126
U. Tutsch, B. Wolf, S. Wessel, L. Postulka, Y. Tsui, H. O. Jeschke, I. Opahle, T. Saha-Dasgupta, R. Valentí, A. Brühl, K. Remović-Langer, T. Kretz, H.-W. Lerner, M. Wagner, and M. Lang, Nature Comm. 5, 5169 (2014). 10.1038/ncomms6169
J. P. Joshi and S. V. Bhat, J. Magn. Res. 168, 284 (2004). 10.1016/j.jmr.2004.03.018
H.-A. Krug von Nidda, L. E. Svistov, M. V. Eremin, R. M. Eremina, A. Loidl, V. Kataev, A. Validov, A. Prokofiev, and W. Aßmus, Phys. Rev. B 65, 134445 (2002). 10.1103/PhysRevB.65.134445
J. M. Law, P. Reuvekamp, R. Glaum, C. Lee, J. Kang, M.-H. Whangbo, and R. K. Kremer, Phys. Rev. B 84, 014426 (2011). 10.1103/PhysRevB.84.014426
V. B. Nalbandyan, E. A. Zvereva, G. E. Yalovega, I. L. Shukaev, A. P. Ryzhakova, A. A. Guda, A. Stroppa, S. Picozzi, A. N. Vasiliev, and M.-H. Whangbo, Inorg. Chem. 52, 11850 (2013). 10.1021/ic401391b
E. A. Zvereva, V. B. Nalbandyan, M. A. Evstigneeva, H.-J. Koo, M.-H. Whangbo, A. V. Ushakov, B. S. Medvedev, L. I. Medvedeva, N. A. Gridina, G. E. Yalovega, A. V. Churikov, A. N. Vasiliev, and B. Büchner, J. Solid State Chem. 225, 89 (2015). 10.1016/j.jssc.2014.12.003
L. J. de Jongh and A. R. Miedema, Adv. Phys. 23, 1 (1974). 10.1080/00018739700101558
J. E. Greedan, J. Mater. Chem. 11, 37 (2001). 10.1039/b003682j
K. Kawasaki, Prog. Theor. Phys. 39, 285 (1968). 10.1143/PTP.39.285
K. Kawasaki, Phys. Lett. A 26, 543 (1968). 10.1016/0375-9601(68)90536-7
H. Mori and K. Kawasaki, Prog. Theor. Phys. 28, 971 (1962). 10.1143/PTP.28.971
D. L. Huber, Phys. Rev. B 6, 3180 (1972). 10.1103/PhysRevB.6.3180
P. M. Richards and M. B. Salamon, Phys. Rev. B 9, 32 (1974). 10.1103/PhysRevB.9.32
R. D. Willett and F. Waldner, J. Appl. Phys. 53, 2680 (1982). 10.1063/1.330892
R. D. Willett and R. Wong, J. Magn. Res. 42, 446 (1981).
T. G. Castner Jr. and M. S. Seehra, Phys. Rev. B 4, 38 (1971). 10.1103/PhysRevB.4.38
T. G. Castner and M. S. Seehra, Phys. Rev. B 47, 578 (1993). 10.1103/PhysRevB.47.578
M. Heinrich, H.-A. Krug von Nidda, A. Loidl, N. Rogado, and R. J. Cava, Phys. Rev. Lett. 91, 137601 (2003). 10.1103/PhysRevLett.91.137601
A. Zorko, F. Bert, A. Ozarowski, J. van Tol, D. Boldrin, A. S. Wills, and P. Mendels, Phys. Rev. B 88, 144419 (2013). 10.1103/PhysRevB.88.144419
D. L. Huber and M. S. Seehra, J. Phys. Chem. Solids 36, 723 (1975). 10.1016/0022-3697(75)90094-3
M. S. Seehra, M. M. Ibrahim, V. S. Babu, and G. Srinivasan, J. Phys.: Condens. Matter 8, 11283 (1996). 10.1088/0953-8984/8/50/048
A. Zorko, D. Arčon, H. van Tol, L. C. Brunel, and H. Kageyama, Phys. Rev. B 69, 174420 (2004). 10.1103/PhysRevB.69.174420
J. H. Roudebush, G. Sahasrabudhe, S. L. Bergman, and R. J. Cava, Inorg. Chem. 54, 3203 (2015). 10.1021/ic502790n
M. E. Fisher, Proc. Roy. Soc. (London) A 254, 66 (1960). 10.1098/rspa.1960.0005
M. E. Fisher, Phil. Mag. 7, 1731 (1962). 10.1080/14786436208213705
R. L. Carlin, Magnetochemistry (Springer-Verlag, Berlin, 1986).
A. Tari, The Specific Heat of Matter at Low Temperature, (Imperial College Press, London, 2003).
H. Benner and J. P. Boucher, Spin Dynamics in the Paramagnetic Regime: NMR and EPR in Two-Dimensional Magnets-"Magnetic Properties of Layered Transition Metal Compounds", edited by L. J. de Jongh (Springer, Netherlands, 1990), p. 323.
M. Yehia, E. Vavilova, A. Möller, T. Taetz, U. Löw, R. Klingeler, V. Kataev, and B. Büchner, Phys. Rev. B 81, 060414 (2010). 10.1103/PhysRevB.81.060414
C. P. Slichter, Principles of Magnetic Resonance, Springer Series in Solid-State Sciences 1, Third Edition (Springer-Verlag, Berlin, Heidelberg, New York, 1990).
Y. Yamada and A. Sakata, J. Phys. Soc. Jpn. 55, 1751 (1986). 10.1143/JPSJ.55.1751
Y. Fujii, H. Kikuchi, T. Arai, Y. Tanabe, K. Kindo, and A. Matsuo, J. Phys.: Conf. Series 200, 022009 (2010). 10.1088/1742-6596/200/2/022009
Y. Ideta, Y. Kawasaki, Y. Kishimoto, T. Ohno, Y. Michihiro, Z. He, Y. Ueda, and M. Itoh, Phys. Rev. B 86, 094433 (2012). 10.1103/PhysRevB.86.094433
Note, however, that the given value actually corresponds to a sum of interlayer couplings (Equation presented), as more effort would be required to distinguish the interlayer couplings. Considering the size compared to (Equation presented) and (Equation presented) however, this is not necessary.
A. Lohmann, H.-J. Schmidt, and J. Richter, Phys. Rev. B 89, 014415 (2014). 10.1103/PhysRevB.89.014415
M. D. Watson, A. McCollam, S. F. Blake, D. Vignolles, L. Drigo, I. I. Mazin, D. Guterding, H. O. Jeschke, R. Valentí, N. Ni, R. Cava, and A. I. Coldea, Phys. Rev. B 89, 205136 (2014). 10.1103/PhysRevB.89.205136