soil parameters identification; inverse analysis; optimization; genetic algorithm; principal component analysis; finite element method; geotechnics; synthetic data
Abstract :
[en] This study concerns the identification of parameters of soil constitutive models from geotechnical measurements by inverse analysis. To deal with the non-uniqueness of the solution, the inverse analysis is based on a genetic algorithm (GA) optimization process. For a given uncertainty on the measurements, the GA identifies a set of solutions. A statistical method based on a principal component analysis (PCA) is, then, proposed to evaluate the representativeness of this set. It is shown that this representativeness is controlled by the GA population size for which an optimal value can be defined. The PCA also gives a first-order approximation of the solution set of the inverse problem as an ellipsoid. These developments are first made on a synthetic excavation problem and on a pressuremeter test. Some experimental applications are, then, studied in a companion paper, to show the reliability of the method.
Disciplines :
Civil engineering
Author, co-author :
Levasseur, Séverine ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Géomécanique et géologie de l'ingénieur
Nova R. Fondements de la Mécanique des Sols. Hermes Science: Paris, 2005.
Tarantola A. Inverse Problem Theory. Elsevier Science B.V.: Amsterdam, 1987.
Cividini A, Jurina L, Gioda G. Some aspects of characterization problems in geomechanics. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts 1981; 18:487-503.
Gens A, Ledesma A, Alonso EE. Backanalysis using prior information. Application to the staged excavation of a cavern in rock. Numerical Methods in Geomechanics. Balkema: Rotterdam, 1988; 2009-2016.
Gioda G, Maier G. Direct search solution of an inverse problem in elastoplasticity: identification of cohesion, friction angle and in situ stress by pressure tunnel tests. International Journal for Numerical Methods in Engineering 1980; 15:1823-1848.
Gioda G, Sakurai S. Back analysis procedures for the interpretation of field measurements in geomechanics. International Journal for Numerical and Analytical Methods in Geomechanics 1987; 11:555-583.
Ledesma A, Gens A, Alonso EE. Estimation of parameters in geotechnical backanalysis. Maximum likelihood approach. Computers and Geotechnics 1996; 18(1):1-27.
Levasseur S, Malécot Y, Boulon M, Flavigny E. Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32(2):189-213.
Maier G, Gioda G. Optimization methods for parametric identification of geotechnical systems. Numerical Methods in Geomechanics, Braga, Portugal, 1981.
Sakurai S, Takeuchi K. Back analysis of measured displacements of tunnels. Rock Mechanics and Rock Engineering 1983; 16:173-180.
Tikhonov A, Arsenine V. Méthodes de Résolution des Problèmes Mal Posés. Mir: Moscow, Russia, 1976.
Anandarajah A, Agarwal D. Computer-aides calibration of soil plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics 1991; 15:835-856.
Calvello M, Finno RJ. Calibration of soil models by inverse analysis. Proceedings of the Eighth International Symposium on Numerical Models in Geomechanics, Ottawa, 2004; 107-113.
Calvello M, Finno RJ. Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics 2004; 31:411-425.
Finno RJ, Calvello M. Supported excavations: observational method and inverse modeling. Journal of Geotechnical and Geoenvironmental Engineering 2005; 131(7):826-836.
Finno RJ, Rechea C. Lessons learned from case studies of excavation support systems through Chicago glacial clays. International Conference on Numerical Simulation of Construction Process in Geotechnical Engineering for Urban Environment, NSC06, Bochum, Allemagne, 2006.
Gens A, Ledesma A, Alonso EE. Estimation of parameters in geotechnical backanalysis. Application to a tunnel excavation problem. Computers and Geotechnics 1996; 18(1):29-46.
Lecampion B, Contantinescu A. Sensitivity analysis for parameter identification in quasi-static poroelasticity. International Journal for Numerical and Analytical Methods in Geomechanics 2005; 29:163-185.
Lecampion B, Contantinescu A, Nguyen Minh D. Parameter identification for lined tunnels in viscoplastic medium. International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26:191-1211.
Zentar R, Hicher PY, Moulin G. Identification of soil parameters by inverse analysis. Computers and Geotechnics 2001; 28:129-144.
Obrzud RF, Vulliet L, Truty A. Constitutive model calibration supported by artificial intelligence. International Journal for Numerical and Analytical Methods in Geomechanics 2009; DOI: 10.1002/nag.707.
Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley: Reading, MA, 1989.
Levasseur S, Malécot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: applications to excavation problems and pressuremeter tests. International Journal for Numerical and Analytical Methods in Geomechanics 2008; submitted.
Rechea Bernal C, Levasseur S, Finno RJ. Inverse analysis techniques for parameter identification in simulation of excavation support systems. Computers and Geotechnics 2008; 35(3):331-345.
Levasseur S. Analyse inverse en géotechnique: développement d'une méthode à base d'algorithmes génétiques. Ph.D. Thesis, Université Joseph Fourier, Grenoble, 2007.
Renders JM. Algorithmes Génétiques et Réseaux de Neurones. Hermes: Paris, 1994.
Favre J-L. Géotechnique. Sécurité des ouvrages. Risques. Modélisation de l'incertain, Fiabilité, Analyse des Risques. Ellipses, Technosup: Paris, 2004. C
Davis L. Handbook of Genetic Algorithms. Van Norstand Reinhold: New York, 1991.
Gallagher K, Sambridge M, Drijkoningen G. Genetic algorithms: an evolution from Monte Carlo methods for strongly non-linear geophysical optimisation problems. Geophysical Research Letters 1991; 18(12):2177-2180.
Stoffa PL, Sen MK. Nonlinear multiparameter optimization using genetic algorithms: inversion of plane-wave seismograms. Geophysics 1991; 56(11):1794-1810.
Brinkgreve RBJ. Plaxis v8. Manuel de Référence, 2003.
AFNOR. Recueil de normes franca̧ises de géotechnique. Tome 2: essais sur ouvrages géotechniques, dimensionnement, exécution. 1999.
Al Husein M. Etude du comportement différé des sols et ouvrages géotechniques. Ph.D. Thesis, Université Joseph Fourier, Grenoble, 2001.
Shahrour I, Kasdi A, Abriak N. Utilisation de l'essai pressiométrique pour la détermination des propriétés mécaniques des sables obéissant au critère de Mohr-Coulomb avec règle d'écoulement non associée. Revue Française de Géotechnique 1995; 73:28-33.
Cambou B, Bahar R. Utilisation de l'essai pressiométrique pour l'identification de paramètres intrinsèques du comportement d'un sol. Revue Française de Géotechnique 1993; 63:39-50.
Baccini A, Besse P, Djean S, Robert-Grani C, San Cristobal M. Analyse statistique des données d'expression génomique. Toulouse Genopole Midi-Pyrénées, 2005.
Crucianu M, Asselin de Beauville JP, Boné R. Méthodes Factorielles Pour l'analyse des Données. Hermes Science: Paris, 2004.