[en] Living radical polymerizations of acrylate are known to be difficult to achieve using TEMPO as a mediator. The stable free radical polymerization (SFRP) of acrylate tends to stop at low monomer conversion due to the accumulation of TEMPO in the medium as a result of unavoidable bimolecular termination. Rather than solving this problem by destroying the excess nitroxide using ascorbic acid or glyceraldehyde associated with pyridine as reported recently, high temperature initiators were used to slowly and continuously generate new radicals throughout the polymerization to consume the excess TEMPO molecules. Polymerizations of n-butyl acrylate initiated by the alkoxyamine unimer (1-benzoyloxy)-2-phenyl-2-(2′,2′,6′,6′-tetramethyl-1′-piperidinyloxy)ethane (BST) were performed between 130 °C and 134 °C in the presence of a series of high temperature peroxide and azo initiators. The best results in this study were obtained by the continuous addition of small amounts of di-tert-amyl peroxide throughout the polymerization. Under these conditions, the acrylate polymerizations fulfilled the criteria of a controlled polymerization process although the molecular weight distributions were slightly broad (Mw/Mn 1.5).
Disciplines :
Chemistry
Author, co-author :
Chan-Seng, Delphine; University of Toronto at Mississauga, Canada > Department of Chemical and Physical Sciences
Debuigne, Antoine ; University of Toronto at Mississauga, Canada > Department of Chemical and Physical Sciences
Georges, Michaël K.; University of Toronto at Mississauga, Canada > Department of Chemical and Physical Sciences
Language :
English
Title :
Stable free radical polymerization of n-butyl acrylate in the presence of high temperature initiators
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Solomon DH, Rizzardo E, Cacioli P. European Patent. 135280, 1985.
Georges M.K., Veregin R.P.N., Kazmaier P.M., and Hamer G.K. Macromolecules 26 (1993) 2987-2988
Georges M.K., Veregin R.P.N., Kazmaier P.M., and Hamer G.K. Trends Polym Sci 2 (1994) 66-72
Hawker C.J., Bosman A.W., and Harth E. Chem Rev 101 (2001) 3661-3688
Kato M., Kamigaito M., Sawamoto M., and Higashimura T. Macromolecules 28 (1995) 1721-1723
Wang J.S., and Matyjaszewski K. J Am Chem Soc 117 (1995) 5614-5615
Matyjaszewski K., and Xia J. Chem Rev 101 (2001) 2921-2990
Kamigaito M., Ando T., and Sawamoto M. Chem Rev 101 (2001) 3689-3745
Chiefari J., Chong Y.K., Ercole F., Krstina J., Jeffery J., Le T.P.T., Mayadunne R.T.A., Meijs G.F., Moad C.L., Moad G., Rizzardo E., and Thang S.H. Macromolecules 31 (1998) 5559-5562
Gaynor S.G., Wang J.S., and Matyjaszewski K. Macromolecules 28 (1995) 8051-8056
Sobek J., Martschke R., and Fischer H. J Am Chem Soc 123 (2001) 2849-2857
Benoit D., Grimaldi S., Finet J.-P., Tordo P., Fontanille M., and Gnanou Y. Controlled Radical Polymerization. In: Matyjaszewski K. (Ed) (1998), American Chemical Society, Washington, DC 225-235 Vol. 685
Benoit D., Grimaldi S., Robin S., Finet J.P., Tordo P., and Gnanou Y. J Am Chem Soc 122 (2000) 5929-5939
Benoit D., Chaplinski V., Brauslau R., and Hawker C.J. J Am Chem Soc 121 (1999) 3904-3920
Benoit D., Harth E., Fox P., Waymouth R.M., and Hawker C.J. Macromolecules 33 (2000) 363-370
Nielsen A., and Brauslau R. J Polym Sci Part A: Polym Chem 44 (2006) 697-717
Knoop C.A., and Studer A. J Am Chem Soc 125 (2003) 16327-16333
Siegenthaler K.O., and Studer A. Macromolecules 39 (2006) 1347-1352
Georges M.K., Lukkarila J.L., and Szkurhan A.R. Macromolecules 37 (2004) 1297-1303
Hawker C.J., Elce E., Dao J., Volksen W., Russell T.P., and Barclay G.G. Macromolecules 29 (1996) 2686-2688
Mayo F.R. J Am Chem Soc 90 (1968) 1289-1295
Khuong K.S., Jones W.H., Pryor W.A., and Houk K.N. J Am Chem Soc 127 (2005) 1265-1277
Veregin R.P.N., Odell P.G., Michalak L.M., and Georges M.K. Macromolecules 29 (1996) 2746-2754
Odell P.G., Rabien A., Michalak L.M., Veregin R.P.N., Quinlan M.H., Moffat K.A., MacLeod P.J., Listigovers N.A., Honeyman C.H., and Georges M.K. Polym Prep (Am Chem Soc, Div Polym Chem) 38 2 (1997) 414-415
Keoshkerian B., Georges M.K., Quinlan M., Veregin R., and Goodbrand B. Macromolecules 31 (1998) 7559-7561
Paleos C.M., and Dais P. J Chem Soc Chem Commun (1977) 345-346
Debuigne A., Radhakrishnan T., and Georges M.K. Macromolecules 39 (2006) 5359-5363
Greszta D., and Matyjaszewski K. J Polym Sci Part A: Polym Chem 35 (1997) 1857-1861
Goto A., and Fukuda T. Macromolecules 30 (1997) 4272-4277
Miura Y., Nakamura N., and Taniguchi I. Macromolecules 34 (2001) 447-455
Goto A., and Fukuda T. Macromolecules 32 (1999) 618-623
Georges MK, Szkurhan AR, Hamer GK, Kazemzadeh A. Eur Polym J, Submitted for publication
Waits H.P., and Hammond G.S. J Am Chem Soc 86 (1964) 1911-1918
Kiefer H., and Traylor T.G. J Am Chem Soc 89 (1967) 6667-6671
Herk L., and Szwarc M. J Am Chem Soc 83 (1961) 2998-3005
Pryor W.A., and Smith K. J Am Chem Soc 92 (1970) 5403-5412
This calibration remains appropriate for poly(n -butyl acrylate) samples as shown by the Mark-Houwink-Sakurada parameters which are similar for n-butyl acrylate and styrene. (a) Couvreur L, Lefay C, Belleney J, Charleux B, Guerret O, Magnet S. Macromolecules 2003; 36: 8260-8267. (b) Farcet C, Belleney J, Charleux B, Pirri R. Macromolecules 2002; 35: 4912-4918. Mark-Houwink-Sakurada parameter in THF at 30 °C KPS = 11.4 × 10-5 dL g-1, αPS = 0.706; K PBA = 12.2 × 10-5 dL g-1, αPBA = 0.700 from: Beuermann S, Paquet DA, McMinn JH, Hutchinson RA. Macromolecules 1996; 29: 4206-4215.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.