Great Chain of Beings prejudice; model of evolution; simplification; systematic error; tree reconstruction artefact
Abstract :
[en] This article aims to shed light on difficulties in rooting the tree of life (ToL) and to explore the (sociological) reasons underlying the limited interest in accurately addressing this fundamental issue. First, we briefly review the difficulties plaguing phylogenetic inference and the ways to improve the modelling of the substitution process, which is highly heterogeneous, both across sites and over time. We further observe that enriched taxon samplings, better gene samplings and clever data removal strategies have led to numerous revisions of the ToL, and that these improved shallow phylogenies nearly always relocate simple organisms higher in the ToL provided that long-branch attraction artefacts are kept at bay. Then, we note that, despite the flood of genomic data available since 2000, there has been a surprisingly low interest in inferring the root of the ToL. Furthermore, the rare studies dealing with this question were almost always based on methods dating from the 1990s that have been shown to be inaccurate for much more shallow issues! This leads us to argue that the current consensus about a bacterial root for the ToL can be traced back to the prejudice of Aristotle's Great Chain of Beings, in which simple organisms are ancestors of more complex life forms. Finally, we demonstrate that even the best models cannot yet handle the complexity of the evolutionary process encountered both at shallow depth, when the outgroup is too distant, and at the level of the inter-domain relationships. Altogether, we conclude that the commonly accepted bacterial root is still unproven and that the root of the ToL should be revisited using phylogenomic supermatrices to ensure that new evidence for eukaryogenesis, such as the recently described Lokiarcheota, is interpreted in a sound phylogenetic framework.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Philippe H, Douady CJ. 2003 Horizontal gene transfer and phylogenetics. Curr. Opin. Microbiol. 6, 498-505. (doi:10.1016/j.mib.2003.09.008)
Zhaxybayeva O et al. 2009 On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl Acad. Sci. USA 106, 5865-5870. (doi:10.1073/pnas.0901260106)
Aravind L, Tatusov RL, Wolf YI, Walker DR, Koonin EV. 1998 Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14, 442-444. (doi:10.1016/S0168- 9525(98)01553-4)
Spang A et al. 2015 Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173-179. (doi:10.1038/nature14447)
Woese CR, Kandler O, Wheelis ML. 1990 Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576-4579. (doi:10.1073/pnas. 87.12.4576)
Haag KL, James TY, Pombert J-F, Larsson R, Schaer TMM, Refardt D, Ebert D. 2014 Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proc. Natl Acad. Sci. USA 111, 15 480-15 485. (doi:10. 1073/pnas.1410442111)
Hirt RP, Logsdon JM, Healy B, Dorey MW, Doolittle WF, Embley TM. 1999 Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA 96, 580-585. (doi:10. 1073/pnas.96.2.580)
James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. 2013 Shared signatures of parasitism and phylogenomics unite Cryptomycota and Microsporidia. Curr. Biol. 23, 1548-1553. (doi:10.1016/j.cub.2013.06.057)
Forterre P, Philippe H. 1999 Where is the root of the universal tree of life? BioEssays 21, 871-879. (doi:10.1002/(SICI)1521-1878(199910)21:10,871:: AID-BIES10.3.0.CO;2-Q)
Laurin-Lemay S, Brinkmann H, Philippe H. 2015 Origin of land plants revisited in the light of sequence contamination and missing data. Curr. Biol. 22, R593-R594. (doi:10.1016/j.cub.2012.06.013)
Timme RE, Bachvaroff TR, Delwiche CF. 2012 Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE 7, e29696. (doi:10.1371/ journal.pone.0029696)
Wickett NJ et al. 2014 Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859-E4868. (doi:10.1073/pnas.1323926111)
Zhong B, Liu L, Yan Z, Penny D. 2013 Origin of land plants using the multispecies coalescent model. Trends Plant Sci. 18, 492-495. (doi:10.1016/j. tplants.2013.04.009)
Zhong B, Xi Z, Goremykin VV, Fong R, Mclenachan PA, Novis PM, Davis CC, Penny D. 2014 Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Mol. Biol. Evol. 31, 177-183. (doi:10.1093/molbev/mst200)
Turmel M, Pombert J, Charlebois P, Otis C, Lemieux C. 2007 The green algal ancestry of land plants as revealed by the chloroplast genome. Int. J. Plant Sci. 168, 679-689. (doi:10.1086/513470)
Bernt M et al. 2013 A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol. Phylogenet. Evol. 69, 352-364. (doi:10.1016/j. ympev.2013.05.002)
Nosenko T et al. 2013 Deep metazoan phylogeny: when different genes tell different stories. Mol. Phylogenet. Evol. 67, 223-233. (doi:10.1016/j. ympev.2013.01.010)
Telford M. 2013 Field et al. Redux. EvoDevo 4, 5. (doi:10.1186/2041-9139-4-5)
Edgecombe G, Giribet G, Dunn C, Hejnol A, Kristensen R, Neves R, Rouse G, Worsaae K, Sørensen M. 2011 Higher-level metazoan relationships: recent progress and remaining questions. Organ. Divers. Evol. 11, 151-172. (doi:10.1007/s13127-011-0044-4)
Lartillot N, Philippe H. 2008 Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Phil. Trans. R. Soc. B 363, 1463-1472. (doi:10.1098/rstb.2007.2236)
Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D. 2011 Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602. (doi:10.1371/journal.pbio.1000602)
Felsenstein J. 1978 Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401-410. (doi:10.2307/ 2412923)
Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA. 1997 Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489-493. (doi:10.1038/387489a0)
Lartillot N, Brinkmann H, Philippe H. 2007 Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7(Suppl. 1), S4. (doi:10. 1186/1471-2148-7-S1-S4)
Philippe H, Germot A. 2000 Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol. Biol. Evol. 17, 830-834. (doi:10.1093/oxford journals.molbev.a026362)
Telford MJ. 2004 Animal phylogeny: back to the coelomata? Curr. Biol. 14, 274-276. (doi:10.1016/j. cub.2004.03.022)
Philippe H, Lartillot N, Brinkmann H. 2005 Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Potostomia. Mol. Biol. Evol. 22, 1246-1253. (doi:10.1093/molbev/msi111)
Dunn CW et al. 2008 Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745-749. (doi:10.1038/nature06614)
Whelan NV, Kocot KM, Moroz LL, Halanych KM. 2015 Error, signal, and the placement of Ctenophora sister to all other animals. Proc. Natl Acad. Sci. USA 112, 5773-5778. (doi:10.1073/pnas.1503453112)
Lartillot N. 2015 Probabilistic models of eukaryotic evolution: time for integration. Phil. Trans. R. Soc. B 370, 20140338. (doi:10.1098/rstb.2014.0338)
Westesson O, Barquist L, Holmes I. 2012 HandAlign: Bayesian multiple sequence alignment, phylogeny and ancestral reconstruction. Bioinformatics 28, 1170-1171. (doi:10.1093/bioinformatics/bts058)
Redelings BD, Suchard MA. 2005 Joint Bayesian estimation of alignment and phylogeny. Syst. Biol. 54, 401-418. (doi:10.1080/10635150590947041)
Szöllóśi GA, Davin AA, Tannier E, Daubin V, Boussau B. 2005 Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Phil. Trans. R. Soc. B 370, 20140335. (doi:10.1098/ rstb.2014.0335)
Boussau B, Szöllóśi GJ, Duret L, Gouy M, Tannier E, Daubin V. 2013 Genome-scale coestimation of species and gene trees. Genome Res. 23, 323-330. (doi:10.1101/gr.141978.112)
Struck TH. 2013 The impact of paralogy on phylogenomic studies-a case study on annelid relationships. PLoS ONE 8, e62892. (doi:10.1371/ journal.pone.0062892)
Jukes TH, Cantor CR. 1969 Evolution of protein molecules. Mamm. Protein Metab. 3, 21-132. (doi:10.1016/B978-1-4832-3211-9.50009-7)
Dayhoff M, Schwartz R. 1978 A model of evolutionary change in proteins. In Atlas of protein sequence and structure (ed. M Dayhoff ), pp. 345-352. Washington, DC: National Biomedical Research Foundation.
Le SQ, Gascuel O. 2008 An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307-1320. (doi:10.1093/molbev/msn067)
Uzzell T, Corbin KW. 1971 Fitting discrete probability distributions to evolutionary events. Science 172, 1089-1096. (doi:10.2307/1731831)
Halpern AL, Bruno WJ. 1998 Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. Mol. Biol. Evol. 15, 910-917. (doi:10.1093/oxfordjournals.molbev.a025995)
Lartillot N, Philippe H. 2004 A Bayesian mixture model for across-site heterogeneities in the aminoacid replacement process. Mol. Biol. Evol. 21, 1095-1109. (doi:10.1093/molbev/msh112)
Goldman N, Yang Z. 1994 A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725-736.
Muse SV, Gaut BS. 1994 A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol. Biol. Evol. 11, 715-724.
Rodrigue N, Philippe H, Lartillot N. 2010 Mutationselection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles. Proc. Natl Acad. Sci. USA 107, 4629-4634. (doi:10.1073/ pnas.0910915107)
Lockhart PJ, Steel MA, Hendy MD, Penny D. 1994 Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 11, 605-612.
Woese CR, Kandler O, Wheelis ML. 1991 A natural classification. Nature 351, 528-529. (doi:10.1038/ 351528c0)
Embley TM, Thomas RH, Williams RAD. 1993 Reduced thermophilic bias in the 16S rDNA sequence from Thermus ruber provides further support for a relationship between Thermus and Deinococcus. Syst. Appl. Microbiol. 16, 25-29. (doi:10.1016/S0723-2020(11)80247-X)
Blanquart S, Lartillot N. 2008 A site- and timeheterogeneous model of amino acid replacement. Mol. Biol. Evol. 25, 842-858. (doi:10.1093/molbev/ msn018)
Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM. 2008 The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20 356-20 361. (doi:10. 1073/pnas.0810647105)
Fitch W, Markowitz E. 1970 An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet. 4, 579-593. (doi:10. 1007/BF00486096)
Galtier N, Jean-Marie A. 2004 Markov-modulated Markov chains and the covarion process of molecular evolution. J. Comp. Biol. 11, 727-733. (doi:10.1089/cmb.2004.11.727)
Zhou Y, Brinkmann H, Rodrigue N, Lartillot N, Philippe H. 2010 A Dirichlet process covarion mixture model and its assessments using posterior predictive discrepancy tests. Mol. Biol. Evol. 27, 371-384. (doi:10.1093/molbev/msp248)
Kolaczkowski B, Thornton JW. 2008 A mixed branch length model of heterotachy improves phylogenetic accuracy. Mol. Biol. Evol. 25, 1054-1066. (doi:10. 1093/molbev/msn042)
Schwartz RS, Mueller RL. 2010 Limited effects of among-lineage rate variation on the phylogenetic performance of molecular markers. Mol. Phylogenet. Evol. 54, 849-856. (doi:10.1016/j.ympev.2009. 12.025)
Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013 PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611-615. (doi:10.1093/ sysbio/syt022)
Roure B, Philippe H. 2011 Site-specific time heterogeneity of the substitution process and its impact on phylogenetic inference. BMC Evol. Biol. 11, 17. (doi:10.1186/1471-2148-11-17)
Rodrigue N, Kleinman CL, Philippe H, Lartillot N. 2009 Computational methods for evaluating phylogenetic models of coding sequence evolution with dependence between codons. Mol. Biol. Evol. 26, 1663-1676. (doi:10.1093/molbev/msp078)
Philippe H et al. 2009 Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19, 706-712. (doi:10.1016/j.cub.2009.02.052)
Williams BAP, Hirt RP, Lucocq JM, Embley TM. 2002 A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418, 865-869. (doi:10.1038/nature00949)
Jiménez-Guri E, Philippe H, Okamura B, Holland PWH. 2007 Buddenbrockia is a cnidarian worm. Science 317, 116-118. (doi:10.1126/science. 1142024)
Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ. 2011 Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470, 255-258. (doi:10.1038/nature09676)
Delsuc F, Brinkmann H, Chourrout D, Philippe H. 2006 Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965-968. (doi:10.1038/nature04336)
Zhaxybayeva O, Lapierre P, Gogarten JP. 2005 Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227, 53-64. (doi:10.1007/ s00709-005-0135-1)
Williams TA, Foster PG, Nye TMW, Cox CJ, Embley TM. 2012 A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. R. Soc. B 279, 4870-4879. (doi:10.1098/ rspb.2012.1795)
Gould SJ. 1997 Full house: the spread of excellence from Plato to Darwin. New York, NY: Harmony Books.
Dagan T, Roettger M, Bryant D, Martin W. 2010 Genome networks root the tree of life between prokaryotic domains. Genome Biol. Evol. 2, 379-392. (doi:10.1093/gbe/evq025)
Hagège C. 2012 Contre la pensée unique. Paris, France: Editions Odile Jacob.
Koerner EFK. 2000 Towards a 'full pedigree' of the 'Sapir-Whorf hypothesis': From Locke to Lucy. In Explorations in linguistic relativity (eds M Pütz, M Verspoor), p. 369. Amsterdam, The Netherlands: John Benjamins Publishing Company.
Pace NR. 2009 Problems with 'Procaryote.' J. Bacteriol. 191, 2008-2010. (doi:10.1128/JB. 01224-08)
Pace NR. 2006 Time for a change. Nature 441, 289. (doi:10.1038/441289a)
Sapp J. 2006 Two faces of the prokaryote concept. Int. Microbiol. 9, 163-172.
Sapp J. 2005 The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol. Mol. Biol. Rev. 69, 292-305. (doi:10.1128/MMBR.69.2.292- 305.2005)
Pace NR. 2008 The molecular tree of life changes how we see, teach microbial diversity. Microbe Mag. 3, 15-20.
Lwoff A, Bordet JJBV. 1944 L'évolution physiologique: étude des pertes de fonctions chez les microorganismes. Paris, France: Hermann.
Zhaxybayeva O, Gogarten JP. 2004 Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet. 20, 182-187. (doi:10.1016/j. tig.2004.02.004)
Lasek-Nesselquist E, Gogarten JP. 2013 The effects of model choice and mitigating bias on the ribosomal tree of life. Mol. Phylogenet. Evol. 69, 17-38. (doi:10.1016/j.ympev.2013.05.006)
Gogarten JP et al. 1989 Evolution of the vacuolar Hp-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661-6665. (doi:10.1073/pnas.86.17.6661)
Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T. 1989 Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355-9359. (doi:10.1073/pnas.86.23.9355)
Schwartz RM, Dayhoff MO. 1978 Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199, 395-403. (doi:10.1126/ science.202030)
Brinkmann H, Philippe H. 1999 Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16, 817-825. (doi:10.1093/oxfordjournals.molbev.a026166)
Stamatakis A. 2014 RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. (doi:10.1093/bioinformatics/btu033)
Lopez P, Casane D, Philippe H. 2002 Heterotachy, an important process of protein evolution. Mol. Biol. Evol. 19, 1-7. (doi:10.1093/oxfordjournals.molbev.a003973)
Philippe H, Forterre P. 1999 The rooting of the universal tree of life is not reliable. J. Mol. Evol. 49, 509-523. (doi:10.1007/PL00006573)
Si Quang L, Gascuel O, Lartillot N. 2008 Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317-2323. (doi:10.1093/bioinformatics/ btn445)
Fournier GP, Gogarten JP. 2010 Rooting the ribosomal tree of life. Mol. Biol. Evol. 27, 1792-1801. (doi:10.1093/molbev/msq057)
Harish A, Tunlid A, Kurland CG. 2013 Rooted phylogeny of the three superkingdoms. Biochimie 95, 1593-1604. (doi:10.1016/j.biochi.2013.04.016)
Lake JA, Servin JA, Herbold CW, Skophammer RG. 2008 Evidence for a new root of the tree of life. Syst. Biol. 57, 835-843. (doi:10.1080/1063515 0802555933)
Skophammer RG, Servin JA, Herbold CW, Lake JA. 2007 Evidence for a Gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24, 1761-1768. (doi:10.1093/molbev/msm096)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.