[en] We demonstrate electrically and ionically conducting nacre-mimetic nanocomposites prepared using self-assembly of synthetic nanoclay in combination with PEDOT:PSS and a poly(ionic liquid) polymer from aqueous dispersions. The resulting nacre-mimetics show high degrees of mesoscale order and combine high stiffness and high strength. In terms of conductivities, the resulting hybrids exceed simple additive behavior and display synergetic conductivities due to high levels of interfaces and anisotropic conductivity pathways. The approach highlights the integration of relevant functionalities into stiff and strong bioinspired materials, and shows that synergetic properties beyond mechanical performance can be realized in advanced multifunctional nanocomposites using nacre-inspired design principles.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Mäkiniemi, Roi Oskari; DWI-Leibniz-Institute for Interactive Materials, Aachen, Germany
Das, Paramita; DWI-Leibniz-Institute for Interactive Materials, Aachen, Germany
Hönders, Daniel; DWI-Leibniz-Institute for Interactive Materials, Aachen, Germany
Grygiel, Konrad; Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
Cordella, Daniela ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Detrembleur, Christophe ; University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Yuan, Jiayin; Max-Planck-Institute of Colloids and Interfaces, Potsdam, Germany
Walther, Andreas; DWI-Leibniz-Institute for Interactive Materials, Aachen, Germany
Jackson, A. P.; Vincent, J. F. V.; Turner, R. M. The Mechanical Design of Nacre Proc. R. Soc. London, Ser. B 1988, 234, 415-440 10.1098/rspb.1988.0056
Barthelat, F.; Espinosa, H. D. An Experimental Investigation of Deformation and Fracture of Nacre-Mother of Pearl Exp. Mech. 2007, 47, 311-324 10.1007/s11340-007-9040-1
Tang, Z.; Kotov, N. A.; Magonov, S.; Ozturk, B. Nanostructured Artificial Nacre Nat. Mater. 2003, 3, 413-418 10.1038/nmat906
Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A.; Kotov, N. A. Ultrastrong and Stiff Layered Polymer Nanocomposites Science 2007, 318, 80-83 10.1126/science.1143176
Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Freezing as a Path to Build Complex Composites Science 2006, 311, 515-518 10.1126/science.1120937
Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, Bio-Inspired Hybrid Materials Science 2008, 322, 1516-1520 10.1126/science.1164865
Walther, A.; Bjurhager, I.; Malho, J.-M.; Pere, J.; Ruokolainen, J.; Berglund, L. A.; Ikkala, O. Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways Nano Lett. 2010, 10, 2742-2748 10.1021/nl1003224
Das, P.; Schipmann, S.; Malho, J.-M.; Zhu, B.; Klemradt, U.; Walther, A. Facile Access to Large-Scale, Self-Assembled, Nacre-Inspired, High-Performance Materials with Tunable Nanoscale Periodicities ACS Appl. Mater. Interfaces 2013, 5, 3738-3747 10.1021/am400350q
Yao, H.-B.; Tan, Z.-H.; Fang, H.-Y.; Yu, S.-H. Artificial Nacre-like Bionanocomposite Films from the Self-Assembly of Chitosan-Montmorillonite Hybrid Building Blocks Angew. Chem., Int. Ed. 2010, 49, 10127-10131 10.1002/anie.201004748
Verho, T.; Karesoja, M.; Das, P.; Martikainen, L.; Lund, R.; Alegría, A.; Walther, A.; Ikkala, O. Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacre-mimetic Nanocomposites Adv. Mater. 2013, 25, 5055-5059 10.1002/adma.201301881
Shao, Y.; Zhao, H.-P.; Feng, X.-Q.; Gao, H. Discontinuous Crack-Bridging Model for Fracture Toughness Analysis of Nacre J. Mech. Phys. Solids 2012, 60, 1400-1419 10.1016/j.jmps.2012.04.011
Das, P.; Malho, J.-M.; Rahimi, K.; Schacher, F. H.; Wang, B.; Demco, D. E.; Walther, A. Nacre-Mimetics with Synthetic Sanoclays up to Ultrahigh Aspect Ratios Nat. Commun. 2015, 6, 5967 10.1038/ncomms6967
Zhu, B.; Jasinski, N.; Benitez, A.; Noack, M.; Park, D.; Goldmann, A. S.; Barner-Kowollik, C.; Walther, A. Hierarchical Nacre-Mimetics with Synergistic Mechanical Properties by Control of Molecular Interactions in Self-Healing Polymers Angew. Chem., Int. Ed. 2015, 54, 8653-8657 10.1002/anie.201502323
Medalia, A. I. Electrical Conduction in Carbon Black Composites Rubber Chem. Technol. 1986, 59, 432-454 10.5254/1.3538209
Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black Polym. Bull. 1991, 25, 265-271 10.1007/BF00310802
Connor, M. T.; Roy, S.; Ezquerra, T. A.; Baltá Calleja, F. J. Broadband ac Conductivity of Conductor-Polymer Composites Phys. Rev. B: Condens. Matter Mater. Phys. 1998, 57, 2286-2294 10.1103/PhysRevB.57.2286
Zheng, W.; Wong, S.-C. Electrical Conductivity and Dielectric Properties of PMMA/expanded Graphite Composites Compos. Sci. Technol. 2003, 63, 225-235 10.1016/S0266-3538(02)00201-4
Wu, M.; Shaw, L. L. On the Improved Properties of Injection-Molded, Carbon Nanotube-Filled PET/PVDF Blends J. Power Sources 2004, 136, 37-44 10.1016/j.jpowsour.2004.04.016
Regev, O.; ElKati, P. N. B.; Loos, J.; Koning, C. E. Preparation of Conducting Nanotube-Polymer Composites Using Latex Technology Adv. Mater. 2004, 16, 248-251 10.1002/adma.200305728
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials Nature 2006, 442, 282-286 10.1038/nature04969
Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. Recent Advances in Graphene Based Polymer Composites Prog. Polym. Sci. 2010, 35, 1350-1375 10.1016/j.progpolymsci.2010.07.005
Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future Adv. Mater. 2000, 12, 481-494 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
Green, M. D.; Salas-de la Cruz, D.; Ye, Y.; Layman, J. M.; Elabd, Y. A.; Winey, K. I.; Long, T. E. Alkyl-Substituted N-Vinylimidazolium Polymerized Ionic Liquids: Thermal Properties and Ionic Conductivities Macromol. Chem. Phys. 2011, 212, 2522-2528 10.1002/macp.201100389
Shaplov, A. S.; Marcilla, R.; Mecerreyes, D. Recent Advances in Innovative Electrolytes based on Poly(ionic liquid)s Electrochim. Acta 2015, 10.1016/j.electacta.2015.03.038
Jonas, F.; Krafft, W.; Muys, B. Poly(3, 4-ethylenedioxythiophene): Conductive Coatings, Technical Applications and Properties Macromol. Symp. 1995, 100, 169-173 10.1002/masy.19951000128
Gijs, M. A. M.; Giesbers, J. B.; Lenczowski, S. K. J.; Janssen, H. H. J. M. New Contacting Technique for Thin Film Resistance Measurements Perpendicular to the Film Plane Appl. Phys. Lett. 1993, 63, 111-113 10.1063/1.109730
Wei, Q.; Mukaida, M.; Kirihara, K.; Ishida, T. Experimental Studies on the Anisotropic Thermoelectric Properties of Conducting Polymer Films ACS Macro Lett. 2014, 3, 948-952 10.1021/mz500446z
Huang, J.; Miller, P. F.; de Mello, J. C.; de Mello, A. J.; Bradley, D. D. C. Influence of Thermal Treatment on the Conductivity and Morphology of PEDOT/PSS Films Synth. Met. 2003, 139, 569-572 10.1016/S0379-6779(03)00280-7
Willa, C.; Yuan, J.; Niederberger, M.; Koziej, D. When Nanoparticles Meet Poly(Ionic Liquid)s: Chemoresistive CO2 Sensing at Room Temperature Adv. Funct. Mater. 2015, 25, 2537-2542 10.1002/adfm.201500314