Agee C.B., Draper D.S. Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle. Earth Planet. Sci. Lett. 2004, 224:415-429.
Agee C.B., et al. Unique meteorite from Early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 2013, 339:780-785.
Albarede F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 2009, 461:1227-1233.
Baker M.B., Stolper E.M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 1994, 58:2811-2827.
Balta J.B., McSween H.Y. Water and the composition of Martian magmas. Geology 2013, 41:1115. 10.1130/G34714.1.
Baratoux D., Toplis M.J., Monnereau M., Gasnault O. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 2011, 472:338-341.
Barrat J.A., Jambon A., Bohn M., Gillet P., Sautter V., Gopel C., Lesourd M., Keller F. Petrology and chemistry of the picritic shergottite North West Africa 1068 (NWA 1068). Geochim. Cosmochim. Acta 2002, 66:3505-3518.
Basu Sarbadhikari A., Day J.M.D., Liu Y., Rumble D., Taylor L.A. Petrogenesis of olivine-phyric shergottite Larkman Nunatak 06319: implications for enriched components in Martian basalts. Geochim. Cosmochim. Acta 2009, 73:2190-2214.
Bertka C.M., Fei Y. Mineralogy of the Martian interior up to core-mantle boundary pressures. J. Geophys. Res. 1997, 102:5251-5264.
Bertka C.M., Holloway J.R. Pigeonite at solidus temperatures: implications for partial melting. J. Geophys. Res., Solid Earth 1993, 98:19755-19766.
Bertka C.M., Holloway J.R. Anhydrous partial melting of an iron-rich mantle 1: subsolidus phase assemblages and partial melting phase-relations at 10 to 30 kbar. Contrib. Mineral. Petrol. 1994, 115:313-322.
Bertka C.M., Holloway J.R. Anhydrous partial melting of an iron-rich mantle 2: primary melt compositions at 15 kbar. Contrib. Mineral. Petrol. 1994, 115:323-338.
Breuer D., Spohn T. Viscosity of the Martian mantle and its initial temperature: constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 2006, 54:153-169.
Carter J., Poulet F. Ancient Plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nat. Geosci. 2013, 6:1008-1012.
Christensen P.R., et al. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 2005, 436:504-509.
Debaille V., Brandon A.D., O'Neill C., Yin Q.Z., Jacobsen B. Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nat. Geosci. 2009, 2:548-552.
Dreibus G., Wanke H. Accretion of the Earth and the inner planets. Proc. 27th International Geological Congress 1984, vol. 11:1-20.
Dreibus G., Wanke H. Mars, a volatile-rich planet. Meteoritics 1985, 20:367-381.
Elkins-Tanton L.T., Parmentier E.M., Hess P.C. Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 2003, 38:1753-1771.
Elkins-Tanton L.T., Zaranek S.E., Parmentier E.M., Hess P.C. Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 2005, 236:1-12.
Filiberto J., Dasgupta R. Fe2+-Mg partitioning between olivine and basaltic melts: applications to genesis of olivine-phyric shergottites and conditions of melting in the Martian interior. Earth Planet. Sci. Lett. 2011, 304:527-537.
Foley C.N., Economou T., Clayton R.N. Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. J. Geophys. Res., Planets 2003, 108:8096.
Francis D. Columbia Hills - an exhumed layered igneous intrusion on Mars?. Earth Planet. Sci. Lett. 2011, 310:59-64.
Gaetani G.A. Igneous petrology. Science 1998, 282:1834-1835.
Gaetani G.A., Grove T.L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 1998, 131:323-346.
Gross J., Filiberto J., Herd C.D.K., Daswani M.M., Schwenzer S.P., Treiman A.H. Petrography, mineral chemistry, and crystallization history of olivine-phyric shergottite NWA 6234: a new melt composition. Meteorit. Planet. Sci. 2013, 48:854-871.
Gross J., Treiman A.H., Filiberto J., Herd C.D.K. Primitive olivine-phyric shergottite NWA 5789: petrography, mineral chemistry, and cooling history imply a magma similar to Yamato-980459. Meteorit. Planet. Sci. 2011, 46:116-133.
Grove T. Corrections to expressions for calculating mineral components in "Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing" and "Experimental petrology of normal MORB near the Kane fracture zone: 22°-25°N, Mid-Atlantic Ridge". Contrib. Mineral. Petrol. 1993, 114:422-424.
Halliday A.N., Porcelli D. In search of lost planets - the paleocosmochemistry of the inner solar system. Earth Planet. Sci. Lett. 2001, 192:545-559.
Hays J.F. Stability and properties of the synthetic pyroxene CaAl2SiO6. Am. Mineral. 1966, 51:1524-1529.
Hirschmann M.M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst. 2000, 1:1042.
Hirschmann M.M., Baker M.B., Stolper E.M. The effect of alkalis on the silica content of mantle-derived melts - NMR, Raman, and infrared spectroscopy. Geochim. Cosmochim. Acta 1998, 62:883-902.
Holloway J.R., Pan V., Gudmundsson G. High-pressure fluid-absent melting experiments in the presence of graphite - oxygen fugacity, ferric ferrous ratio and dissolved CO2. Eur. J. Mineral. 1992, 4:105-114.
Humayun M., et al. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 2013, 503:513-516.
Khan A., Connolly J.A.D. Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res. 2008, 113:E07003.
Kinzler R.J. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J. Geophys. Res., Solid Earth 1997, 102:853-874.
Kinzler R.J., Grove T.L. Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J. Geophys. Res. 1992, 97:6885-6906.
Krawczynski M.J., Olive J.L. A new fitting algorithm for petrological mass-balance problems. American Geophysical Union, Fall Meeting 2011 2011, abstract #V53B-2613.
Laporte D., Toplis M., Seyler M., Devidal J.-L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib. Mineral. Petrol. 2004, 146:463-484.
Lodders K., Fegley B. An oxygen isotope model for the composition of Mars. Icarus 1997, 126:373-394.
Matsukage K.N., Nagayo Y., Whitaker M.L., Takahashi E., Kawasaki T. Melting of the Martian mantle from 1.0 to 4.5 GPa. J. Mineral. Petrol. Sci. 2013, 108:201-214.
McCubbin F.M., Hauri E.H., Elardo S.M., Vander Kaaden K.E., Wang J., Shearer C.K. Hydrous melting of the martian mantle produced both depleted and enriched shergottites. Geology 2012, 40:683. 10.1130/G33242.1.
McCubbin F.M., et al. Composition of fine-grained bulk matrix and protobreccia clast matrix in Northwest Africa 7034: implications for the composition of the martian crust. 46th Lunar and Planet. Sci. Conference 2015, 1723.
McSween H.Y., Grove T.L., Wyatt M.B. Constraints on the composition and petrogenesis of the Martian crust. J. Geophys. Res., Planets 2003, 108:5135.
McSween H.Y., et al. Alkaline volcanic rocks from the Columbia Hills, Gusev Crater, Mars. J. Geophys. Res., Planets 2006, 111:E09S91.
McSween H.Y., et al. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J. Geophys. Res., Planets 2006, 111:E02S10.
McSween H.Y., Taylor G.J., Wyatt M.B. Elemental composition of the Martian crust. Science 2009, 324:736-739.
Médard E., McCammon C.A., Barr J.A., Grove T.L. Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am. Mineral. 2008, 93:1838-1844.
Médard E., Schmidt M., Schiano P. Liquidus surfaces of ultracalcic primitive melts: formation conditions and sources. Contrib. Mineral. Petrol. 2004, 148:201-215.
Ming D.W., et al. Geochemical properties of rocks and soils in Gusev Crater, Mars: results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. J. Geophys. Res., Planets 2008, 113:E12S39.
Misawa K. The Yamato 980459 olivine-phyric shergottite consortium. Antarct. Meteor. Res. 2004, 17:1-12.
Monders A.G., Médard E., Grove T.L. Phase equilibrium investigations of the Adirondack class basalts from the Gusev Plains, Gusev Crater, Mars. Meteorit. Planet. Sci. 2007, 42:131-148.
Morgan J.W., Anders E. Chemical composition of Mars. Geochim. Cosmochim. Acta 1979, 43:1601-1610.
Musselwhite D.S., Dalton H.A., Kiefer W.S., Treiman A.H. Experimental petrology of the basaltic shergottite Yamato-980459: implications for the thermal structure of the Martian mantle. Meteorit. Planet. Sci. 2006, 41:1271-1290.
Nekvasil H., McCubbin F.M., Harrington A., Elardo S., Lindsley D.H. Linking the Chassigny meteorite and the Martian surface rock Backstay: insights into igneous crustal differentiation processes on Mars. Meteorit. Planet. Sci. 2009, 44:853-869.
O'Hara M.J. The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth-Sci. Rev. 1968, 4:69-133.
Peslier A.H., Hnatyshin D., Herd C.D.K., Walton E.L., Brandon A.D., Lapen T.J., Shafer J.T. Crystallization, melt inclusion, and redox history of a Martian meteorite: olivine-phyric shergottite Larkman Nunatak 06319. Geochim. Cosmochim. Acta 2010, 74:4543-4576.
Plesa A.C., Tosi N., Breuer D. Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars?. Earth Planet. Sci. Lett. 2014, 403:225-235.
Pouchou J.L., Pichoir F. New model for quantitative x-ray microanalysis. Part I: application to the analysis of homogeneous samples. Rech. Aérosp. 1984, 13-38. (English edition).
Rogers A.D., Nekvasil H. Feldspathic rocks on Mars: compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophys. Res. Lett 2015, 10.1002/2015GL063501.
Sack R., Ghiorso M. Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2. Contrib. Mineral. Petrol. 1989, 102:41-68.
Sanloup C., Jambon A., Gillet P. A simple chondritic model of Mars. Phys. Earth Planet. Inter. 1999, 112:43-54.
Santos A.R., Agee C.B., McCubbin F.M., Shearer C.K., Burger P.V., Tartèse R., Anand M. Petrology of igneous clasts in Northwest Africa 7034: implications for the petrologic diversity of the martian crust. Geochim. Cosmochim. Acta 2015, 157:56-85.
Sautter V., et al. Igneous mineralogy at Bradbury Rise: the first ChemCam campaign at Gale crater. J. Geophys. Res., Planets 2014, 119. 10.1002/2013JE004472.
Scheinberg A., Elkins-Tanton L.T., Zhong S.J. Timescale and morphology of Martian mantle overturn immediately following magma ocean solidification. J. Geophys. Res., Planets 2014, 119. 10.1002/2013JE004496.
Schmidt M.E., et al. Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: evidence for and significance of an alkali and volatile-rich igneous source. J. Geophys. Res., Planets 2014, 119:64-81.
Stolper E.M., et al. The petrochemistry of Jake_M: a Martian mugearite. Science 2013, 341:1239463.
Takahashi E., Kushiro I. Melting of a dry peridotite at high pressures and basalt magma genesis. Am. Mineral. 1983, 68:859-879.
Taylor G.J. The bulk composition of Mars. Chem. Erde-Geochem. 2013, 73:401-420.
Toplis M.J. The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib. Mineral. Petrol. 2005, 149:22-39.
Udry A., Lunning N.G., McSween H.Y., Bodnar R.J. Petrogenesis of a vitrophyre in the martian meteorite breccia NWA 7034. Geochim. Cosmochim. Acta 2014, 141:281-293.
Usui T., McSween H.Y., Floss C. Petrogenesis of olivine-phyric shergottite Yamato 980459, revisited. Geochim. Cosmochim. Acta 2008, 72:1711-1730.
Wasylenki L.E., Baker M.B., Kent A.J.R., Stolper E.M. Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J. Petrol. 2003, 44:1163-1191.
Wray J.J., Hansen S.T., Dufek J., Swayze G.A., Murchie S.L., Seelos F.P., Skok J.R., Irwin R.P., Ghiorso M.S. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat. Geosci. 2013, 6:1013-1017.
Zipfel J., et al. Bounce Rock - a shergottite-like basalt encountered at Meridiani Planum, Mars. Meteorit. Planet. Sci. 2011, 46:1-2.