Abstract :
[en] Spatial and temporal regulation of cell phenotype by mechanical forces is a growing field of research in health sciences since these stimuli influence cellular functions, such as proliferation, migration, differentiation and gene expression. In the context of the Fluolive project selected by the European Space Agency and aiming at evaluating the impact of gravity alterations on the cell phenotype, we have developed new bone-derived cell lines adapted for live-cell imaging of the cytoskeleton. Osteoblastic cells derived from human osteosarcomas were used as experimental models. U2-OS and SaoS-2 cells stably expressing TagGFP2- β-actin and mCherry- α-tubulin were established and single-cell clonal cultures were characterized in terms of recombinant proteins production and localization, fluorescence intensity, cell proliferation and migration rates. Living fluorescently-tagged cell lines allow real-time fluorescence microscopy of the cytoskeleton dynamics without bleaching and without alteration of cell morphology. U2-OS and SaoS-2 TagGFP2- β-actin and mCherry- α-tubulin clones will be used to monitor the effect of mechanical forces in models of altered gravity on Earth and possibly on the ISS. © 2014, Springer Science+Business Media Dordrecht.
Scopus citations®
without self-citations
0