L. Sawle, and K. Ghosh How do thermophilic proteins and proteosomes withstand high temperature? Biophys. J. 101 2011 217 227
G. Feller Protein stability and enzyme activity at extreme biological temperatures J. Phys. Condens. Matter 22 2010 1 17
R. Sterner, and W. Liebl Thermophilic adaptation of proteins Crit. Rev. Biochem. Mol. Biol. 36 2001 39 106
L.D. Unsworth, J. van der Oost, and S. Koutsopoulos Hyperthermophilic enzymes - stability, activity and implementation strategies for high temperature applications FEBS J. 274 2007 4044 4056
K.A. Luke, C.L. Higgins, and P. Wittung-Stafshede Thermodynamic stability and folding of proteins from hyperthermophilic organisms FEBS J. 274 2007 4023 4033
A. Razvi, and J.M. Scholtz Lessons in stability from thermophilic proteins Protein Sci. 15 2006 1569 1578
S. Kumar, C.J. Tsai, and R. Nussinov Factors enhancing protein thermostability Protein Eng. 13 2000 179 191
G. Vogt, S. Woel, and P. Argos Protein thermal stability, hydrogen bonds, and ion pair J. Mol. Biol. 269 1997 631 643
L. Xiao, and B. Honig Electrostatic contributions to the stability of hyperthermophilic proteins J. Mol. Biol. 289 1999 1435 1444
A. Szilágyi, and P. Závodszky Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey Structure 8 2000 493 504
J. Okada, T. Okamoto, A. Mukaiyama, T. Tadokoro, D.J. You, H. Chon, Y. Koga, K. Takano, and S. Kanaya Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins BMC Evol. Biol. 10 2010 207 218
A. Mukayama, and K. Takano Slow unfolding of monomeric proteins from hyperthermophiles with reversible unfolding Int. J. Mol. Sci. 10 2009 1369 1385
H.F. Gilbert Molecular and cellular aspects of thiol-disulfide exchange Adv. Enzymol. Relat. Areas Mol. Biol. 63 1990 69 172
P. Mallick, D.R. Boutz, D. Eisenberg, and T.O. Yeates Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds Proc. Natl. Acad. Sci. U. S. A. 99 2002 9679 9684
G. Cacciapuoti, M. Porcelli, C. Bertoldo, M. De Rosa, and V. Zappia Purification and characterization of extremely thermophilic and thermostable 5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds J. Biol. Chem. 269 1994 24762 24769
T.C. Appleby, I.I. Mathews, M. Porcelli, G. Cacciapuoti, and S.E. Ealick Three-dimensional structure of a hyperthermophilic 5′-deoxy-5′-methylthioadenosine phosphorylase from Sulfolobus solfataricus J. Biol. Chem. 42 2001 39232 39242
J. Meyer, M.D. Clay, M.K. Johnson, A. Stubna, E. Münch, C. Higgins, and P. Wittung-Stafshede A hyperthermophilic plant-type [2Fe-2S] ferredoxin from Aquifex aeolicus is stabilized by a disulfide bond Biochemistry 41 2002 3096 3108
G. Cacciapuoti, M.A. Moretti, S. Forte, A. Brio, L. Camardella, V. Zappia, and M. Porcelli Methylthioadenosine phosphorylase from the archaeon Pyrococcus furiosus.Mechanism of the reaction and assignment of disulfide bonds Eur. J. Biochem. 271 2004 4834 4844
G. Cacciapuoti, S. Gorassini, M.F. Mazzeo, R.A. Siciliano, V. Carbone, V. Zappia, and M. Porcelli Biochemical and structural characterization of mammalian-like purine nucleoside phosphorylase from the archaeon Pyrococcus furiosus FEBS J. 274 2007 2482 2495
E. Pedone, D. Limauro, and S. Bartolucci The machinery for oxidative protein folding in thermophiles Antioxid. Redox Signal. 10 2008 157 169
B. Wilkinson, and H.F. Gilbert Protein disulfide isomerase Biochim. Biophys. Acta 1699 2004 35 44
A. Bzowska, E. Kulikowska, and D. Shugar Purine nucleoside phosphorylases: properties, functions and clinical aspects Pharmacol. Ther. 88 2000 349 425
M.J. Pugmire, and S.E. Ealick Structural analyses reveal two distinct families of nucleoside phosphorylases Biochem. J. 361 2002 1 25
G. Cacciapuoti, S. Forte, M.A. Moretti, A. Brio, V. Zappia, and M. Porcelli A novel hyperthermostable 5′-deoxy-5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus FEBS J. 272 2005 1886 1899
H.G. Williams-Ashman, J. Seidenfeld, and P. Galletti Trends in the biochemical pharmacology of 5′-deoxy-5′-methylthioadenosine Biochem. Pharmacol. 31 1982 277 288
Y. Zhang, M. Porcelli, G. Cacciapuoti, and S.E. Ealick The crystal structure of 5′-deoxy-5′-methylthioadenosine phosphorylase II from Sulfolobus solfataricus, a thermophilic enzyme stabilized by intramolecular disulfide bonds J. Mol. Biol. 357 2006 252 262
G. Cacciapuoti, I. Peluso, F. Fuccio, and M. Porcelli Purine nucleoside phosphorylases from hyperthermophilic Archaea require a CXC motif for stability and folding FEBS J. 276 2009 5799 5805
F. Schlenk, and D.J. Ehninger Observations on the metabolism of 5′-methylthioadenosine Arch. Biochem. Biophys. 106 1964 95 100
J. Sambrook, E.F. Fritsch, and T. Maniatis Molecular Cloning: A Laboratory Manual 2nd edn 1989 Cold Spring Harbor Laboratory Press Plainview, NY
K. Weber, J.R. Pringle, and M. Osborn Measurement of molecular weight by electrophoresis on SDS-acrylamide gel Methods Enzymol. 26 1972 3 27
M.M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 72 1976 248 254
S.C. Gill, and P.H. von Hippel Calculation of protein extinction coefficients from amino acid sequence data Anal. Biochem. 182 1989 319 326
S.Y. Venyaminov, and J.T. Yang Determination of Protein Secondary Structure G.D. Fasman, Circular dichroism and the conformational analysis of biomolecules 1996 Plenum Press New York 69 107
G. Cacciapuoti, F. Fuccio, L. Petraccone, P. Del Vecchio, and M. Porcelli Role of disulfide bonds in conformational stability and folding of 5′-deoxy-5′-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus Biochim. Biophys. Acta 1824 2012 1136 1143
R.L. Baldwin Energetics of protein folding J. Mol. Biol. 371 2007 (283-30)
R. Jaenicke, and G. Bohm The stability of proteins in extreme environments Curr. Opin. Struct. Biol. 8 1998 738 748
C. Moczygemba, J. Guidry, K.L. Jones, C.M. Gomes, M. Teixeira, and P. Wittung-Stafshede High stability of a ferredoxin from the hyperthermophilic archaeon A. ambivalens: involvement of electrostatic interactions and cofactors Protein Sci. 10 2001 1539 1548
C.M. Johnson Differential scanning calorimetry as a tool for protein folding and stability See comment in PubMed Commons below Arch. Biochem. Biophys. 531 2013 100 109
S. D'Amico, and G. Feller A nondetergent sulfobetaine improves protein unfolding reversibility in microcalorimetric studies Anal. Biochem. 385 2009 389 391
A.J. Baldwin, and L.E. Kay NMR spectroscopy brings invisible protein states into focus Nat. Chem. Biol. 5 2009 808 814
A. Fontana, P. Polverino de Laureto, and V. De Filippis Molecular Aspects of Proteolysis of Globular Proteins W.J.J. van den Tweel, A. Harder, R.M. Buitelaar, Protein Stability and Stabilization 1993 Elsevier Science Publishers Amsterdam 101 110
A. Fontana, P. Polverino de Laureto, B. Spolaore, E. Frare, P. Picotti, and M. Zambonin Probing protein structure by limited proteolysis Acta Biochim. Pol. 51 2004 299 321