Jupiter; Hubble Space Telescope; aurora; main emission; altitude; Lisri
Abstract :
[en] The main auroral emission at Jupiter generally forms a quasi-continuous curtain around each magnetic poles. This emission magnetically maps to the middle magnetosphere and is related to the corotation enforcement of the plasma originating from the volcanic satellite Io. The first models of corotation enforcement current system at Jupiter assumed symmetry around the magnetic axis. However, observations and further development of these models outlined the importance of local time variability of such currents. In this presentation, we show the results of two studies of this local time variability relying on the large dataset of Far-UV observations from the Hubble Space Telescope (HST).
Knight’s theory of field aligned current predicts that the auroral precipitating energy flux and the energy of the precipitating electrons are correlated. Since the altitude of the auroral emissions decreases as the energy increases, it is thus expected that the altitude of the auroral brightness peak varies as a function of the local time following the variations of the field aligned currents. We compare the altitude of the main emission on the post-dusk side as seen in the visible domain by Galileo’s Solid State Imager and the same altitude for the night side as seen by the Advanced Camera for Surveys (ACS) on board HST in the Far-UV domain. We show some significant differences between the two data sets. Unfortunately, a careful analysis involving both spectral observations and simulations indicates that the Far-UV vertical profiles are hampered by observational ambiguities due to absorption by hydrocarbon molecules. Only additional and judiciously designed new observations could reveal the actual amount of methane along the line of sight.
The second study consists in a comparison of the emitted power in local time sectors corresponding to dawn and dusk. Results in the northern hemisphere are difficult to interpret because the magnetic anomaly probably causes a decrease of the auroral brightness in regions of strong magnetic field. In the southern hemisphere, where the field magnitude is more uniform along the main oval, the dusk sector is ~3 times brighter than the dawn sector. In accordance with measurements of magnetic field divergence in the equatorial plane by Galileo, these results suggest the presence of a partial ring current in the night side of the magnetosphere with upward currents in the dawn side and downward currents in the dusk side.
Research Center/Unit :
LiSRI - Liège Space Research Institute - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Bonfond, Bertrand ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gustin, Jacques ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Grodent, Denis ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Radioti, Aikaterini ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)