[en] Lipolytic enzymes are widely distributed and fulfil important physiological functions in the microorganisms inhabiting diverse environments. Soils are rich, diversified environments containing microbial communities that remain largely unknown.
Disciplines :
Microbiology
Author, co-author :
Stroobants, Aurore ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Martin, Renée ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Roosens, Lyse
Portetelle, Daniel ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Vandenbol, Micheline ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Language :
English
Title :
New lipolytic enzymes identified by screening two metagenomic libraries derived from the soil of a winter wheat field
Publication date :
2015
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Artimo P. et al., 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res., 40(W1), W597-603.
Biver S. & Vandenbol M., 2013. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J. Ind. Microbiol. Biotechnol., 40(2), 191-200.
Biver S. et al., 2014. Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose. J. Ind. Microbiol. Biotechnol., 41(3), 479-488.
Cantarel B.L. et al., 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res., 37, D233-238.
Cantu D.C. et al., 2011. ThYme: a database for thioester-active enzymes. Nucleic Acids Res., 39, D342-346.
Casas-Godoy L. et al., 2012. Lipases: an overview. Methods Mol. Biol., 861, 3-30.
Charbonneau D.M. & Beauregard M., 2013. Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: distinctive patterns within the new bacterial lipolytic enzyme family XV. PLoS One, 8(10), e76675, doi: 10.1371/journal.pone.0076675.
Chu X. et al., 2008. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl. Microbiol. Biotechnol., 80(4), 615-625.
Ewis H.E. et al., 2004. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene, 329, 187-195.
Fazary A.E. & Ju Y.-H., 2013. The large-scale use of feruloyl esterases in industry. Biotechnol. Mol. Biol. Rev., 3(5), 95-110.
Fu J. et al., 2013. Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Appl. Microbiol. Biotechnol., 97(9), 3965-3978.
Handrick R. et al., 2001. A new type of thermoalkalophilic hydrolase of Paucimonas lemoignei with high specificity for amorphous polyesters of short chain-length hydroxyalkanoic acids. J. Biol. Chem., 276(39), 36215-36224.
Hong K.S. et al., 2007. Selection and characterization of forest soil metagenome genes encoding lipolytic enzymes. J. Microbiol. Biotechnol., 17(10), 1655-1660.
Kim E.Y. et al., 2009. Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl. Environ. Microbiol., 75, 257-260.
Lee M.H. et al., 2006. Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl. Environ. Microbiol., 72, 7406-7409.
Lee S.W. et al., 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol., 65(6), 720-726.
Lenfant N. et al., 2013. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res., 41, D423-429.
Levisson M. et al., 2007. Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima. FEBS J., 274(11), 2832-2842.
Marchler-Bauer A. et al., 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res., 39, D225-229.
Nacke H. et al., 2011. Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiol. Ecol., 78(1), 188-201.
Panda T. & Gowrishankar B.S., 2005. Production and applications of esterases. Appl. Microbiol. Biotechnol., 67(2), 160-169.
Petersen T.N. et al., 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 8(10), 785-786.
Rao L. et al., 2011. A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes. Biochim. Biophys. Acta, 1814, 1695-1702.
Strohl W.R., 2000. The role of natural products in a modern drug discovery program. Drug Discovery Today, 5(2), 39-41.
Stroobants A. et al., 2014a. Diversity of bacterial communities in a profile of a winter wheat field: known and unknown members. Microb. Ecol., 68(4), 822-833.
Stroobants A. et al., 2014b. New carbohydrate-active enzymes identified by screening two metagenomic libraries derived from the soil of a winter wheat field. J. Appl. Microbiol., 117(4), 1045-1055.