[en] The alluvial aquifer of the Meuse River is contaminated at regional scale in the urbanized and industrialized area of Liège in Belgium, in particular inorganics pollutants such as sulfate, nitrate and ammonium. The sources of those contaminants are numerous: brownfields, urban waste water, subsurface acid mine drainage from former coal mines, atmospheric deposits related to former pollutants emissions in the atmosphere ... Sulfate, nitrate and ammonium are both typical pollutants of the aquifer and tracers of the possible pollution sources.
In the Water Framework Directive context, a detailed hydrogeochemical characterization of groundwater was performed. The aim is to determine the origin of the inorganic contaminations, the main processes contributing to poor groundwater quality and the spatial extent of the contaminations. A large hydrochemical sampling campaign was performed, based on 71 selected representative sampling locations, to better characterize the different vectors (end-members) of contamination of the alluvial aquifer and their respective contribution to groundwater contamination in the area. Groundwater samples were collected and analyzed for major and minor compounds and metallic trace elements. The analyses also include stable isotopes in water, sulfate, nitrate, ammonium, dissolved inorganic carbon, boron and strontium.
Different hydrogeochemical approaches are combined to obtain a global understanding of the hydrogeochemical processes at regional scale. Hydrochemical interpretations are based on classical diagrams, spatial distribution maps, geochemical equations, multivariate statistics such as self-organizing maps and isotopic analyses. With this combined approach, the location of the contaminant sources and most contaminated sectors of the alluvial aquifer together with a better understanding of geochemical processes involved are obtained.
Redox processes strongly influence the composition of groundwater, specifically for compounds degrading the quality of groundwater in the area (sulfate, nitrate and ammonium). The highest concentrations of sulfate can be associated with the post-mining stage in the acid mine drainage process. Various reactions involving nitrogen compounds have been identified and allow a better understanding of causes of high concentrations of ammonium and nitrate. Denitrification and sulphate reduction are also demonstrated based on isotopic ratios.