Metal matrix composites; Interface; Thermomechanical Properties; Anisotropy; Squeeze casting
Abstract :
[en] Composite plates in which the low CTE phase has the shape of a honeycomb are anticipated to present optimum anisotropy of thermal expansion and thermal conductivity for baseplates in electronic packaging. This design is explored by choosing an invar alloy for the low CTE phase. In order to allow the formation of a passivation layer protecting from reaction with liquid Al during squeeze casting, the honeycomb is made of the Cr-rich alloy commonly called “stainless-invar”. Composite plates containing 20vol% and 38vol% stainless invar were processed using honeycombs with the same thickness over cell side ratio. Experimental CTE values are significantly lower than the predictions of three different thermo-elastic models. The very limited amplitude of the strain hysteresis precludes the occurrence of global plastic yielding in the matrix. It appears that, owing to the high contiguity of the low CTE phase, the low value of the experimental CTE results from void closing and opening by localised plastic flow. A honeycomb volume fraction of 38% is necessary for bringing the average CTE down to the level suitable for packaging applications. The ratio of transverse thermal conductivity to density then amounts to about half of the performance of the best Al/SiC composites.
Disciplines :
Materials science & engineering
Author, co-author :
Ryelandt, Sophie; Université Catholique de Louvain - UCL > Institute of Mechanics, Materials and Civil Engineering > IMAP
Mertens, Anne ; Université de Liège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Delannay, Francis; Université Catholique de Louvain - UCL > Institute of Mechanics, Materials and Civil Engineering > IMAP
Language :
English
Title :
Al/stainless-invar composites with tailored anisotropy for thermal management in light weight electronic packaging
Frear D.R. The mechanical behavior of interconnect materials for electronic packaging. JOM March 1999, 22-27.
Nakamura Y. Invar systems. Springer Ser. Solid-State Sci. 1991, 92:111-132.
Huber T., Degischer H.P., Lefranc G., Schmitt T. Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles. Compos. Sci. Technol. 2006, 66:2206-2217.
Chu K., Jia C., Liang X., Chen H., Guo H. Thermal conductivity of pressure infiltrated SiCp/Al composites with various size distributions: experimental study and modeling. Mater. Des. 2009, 30:3497-3503.
Weber L., Sinnicco G., Molina J.-M. Influence of processing route on electrical and thermal conductivity of Al/SiC composites with bimodal particle distribution. J. Mater. Sci. 2010, 45:2203-2209.
Lee J.-M., Lee S.-K., Hong S.-J., Kwon Y.-N. Microstructures and thermal properties of A356/SiCp composites fabricated by liquid pressing method. Mater. Des. 2012, 37:313-316.
Wang X.G., Ren H.Y., Zhu M., Deng L.R., Lu S.H. The research of β-SiCp/Al electronic packaging composites fabricated by pressureless infiltrating. Adv. Mater. Res. 2012, 3816-3821.
Roudini G., Tavangar R., Weber L., Mortensen A. Influence of reinforcement contiguity on the thermal expansion of alumina particle reinforced aluminium composites. Int. J. Mater. Res. 2010, 101:1113-1120.
Young M.L., Rao R., Almer J.D., Haeffner D.R., Lewis J.A., Dunand D.C. Effect of ceramic preform geometry on load partitioning in Al2O3-Al composites with three-dimensional periodic architecture. Mater. Sci. Eng. 2009, A526:190-196.
Weber L., Tavangar R. Diamond-based metal matrix composites for thermal management made by liquid metal infiltration - potential and limits. Adv. Mater. Res. 2009, 59:111-115.
Long J., Li X., Fang D., Peng P., He Q. Fabrication of diamond particles reinforced Al-matrix composites by hot-press sintering, Int. J. Refract. Met. Hard Mater. 2013, 41:85-89.
Molina-Jordá J.M. Design of composites for thermal management: aluminum reinforced with diamond-containing bimodal particle mixtures. Compos. A: Appl. Sci. Manuf. 2015, 70:45-51.
Chen J.K., Huang I.S. Thermal properties of aluminum-graphite composites by powder metallurgy. Compos. Part B 2013, 44:698-703.
Uju W.A., Oguocha I.N.A. A study of thermal expansion of Al-Mg alloy composites containing fly ash. Mater. Des. 2012, 33:503-509.
Deng C.F., Ma Y.X., Zhang P., Zhang X.X., Wang D.Z. Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater. Lett. May 31, 2008, 62(15):2301-2303.
Aryasomayajula L., Wolter K.-J. Carbon nanotube composites for electronic packaging applications: a review. J. Nanotechnol 2013, (6pp.). 10.1155/2013/296517.
Shercliff H.R., Ashby M.F. Design with metal matrix composites. Mater. Sci. Technol. 1994, 10:443-451.
Delannay F. Thermal stresses and thermal expansion in MMCs. Comprehensive Composite Materials 2000, vol. 3:341-369. Elsevier Science Ltd., Oxford, (chapter 13). A. Kelly, C. Zweben (Eds.).
Shen Y.L. Combined effect of microvoids and phase contiguity on the thermal expansion of metal-ceramic composites. Mater. Sci. Eng. 1997, A237:102-108.
Roy S., Albrecht P., Przybilla L., Weidenmann K.A., Heilmaier M., Wanner A. Effect of phase architecture on the thermal expansion behavior of interpenetrating metal/ceramic composites. Processing and Properties of Advanced Ceramics and Composites V - Materials Science and Technology 2012 Conference, MS and T 2012. Pittsburgh, PA 2013, 33-43.
Li S., Xiong D., Liu M., Bai S., Zhao X. Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram. Int. 2014, 40:7539-7544.
Nan C.W., Birringer R., Clarke D.R., Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81:6692-6699.
Wu D., Wu S., Yang L., Shi C., Wu Y., Tang W. Preparation of Cu/Invar composites by powder metallurgy. Powder Metall. 2015, 58:100-105.
Bhagat R.B. Growth kinetics of interface intermetallic compounds in stainless steel reinforced aluminium matrix composites. J. Mater. Sci. 1989, 24:1496-1502.
Barbier F., Ambroise M.H. In-situ process for producing aluminium matrix composites containing intermetallic material. J. Mater. Sci. Lett. 1995, 14:457-459.
Dunand D.C., Sommer J.L., Mortensen A. Synthesis of bulk and reinforced nickel aluminides by reactive infiltration. Metall. Trans. A 1993, A24:2161-2170.
Lapin J., Tiberghien D., Delannay F. On the parameters affecting the formation of iron aluminides during pressure-assisted infiltration of aluminium into a preform of steel fibres. Intermetallics 2000, 8:1429-1438.
Tiberghien D., Lapin J., Ryelandt S., Delannay F. On the control of the residual porosity in iron aluminides processed by reactive squeeze-infiltration of aluminium into a preform of steel fibres. Mater. Sci. Eng. A 2002, 332:427-435.
Boland F., Colin C., Delannay F. Control of interfacial reactions during liquid phase processing of aluminium matrix composites reinforced with Inconel 601 fibres. Metall. Mater. Trans. A 1998, A29:1727-1739.
Boland F., Colin C., Salmon C., Delannay F. Tensile flow properties of Al-base matrix composites reinforced with a random planar network of continuous metallic fibres. Acta Mater. 1998, 46:6311-6323.
Salmon C., Colin C., Molins R., Delannay F. Strengthening of Al/Ni-based composites by in situ growth of intermetallic particles. Mater. Sci. Eng. A 2002, 334:193-200.
Salmon C., Tiberghien D., Molins R., Colin C., Delannay F. Oxidation behaviour in air of thin IN601 fibres. Mater. High Temp. 2000, 17:271-278.
Salmon C., Tiberghien D., Molins R., Colin C., Delannay F. Influence of the oxidation conditions of the fibres on the mechanical properties of Al matrix composites reinforced with Ni-based fibres. Mater. Sci. Forum 2001, 369-372:435-442.
Masumoto H. On the thermal expansion of alloys of cobalt, iron, and chromium, and a new alloy, "Stainless-Invar". Sci. Rep. Tohoku Univ. Ser. 1934, 123:265.
Physics and applications of invar alloys. Honda Materials Series on Materials Science 1978, 3-17. Maruzen Company, Tokyo. H. Saito (Ed.).
Wassermann E.F. Invar: moment-volume instabilities in transition metals and alloys Handbook of Ferromagnetic Materials 1990, vol. 5:237-322. (North-Holland, Amsterdam). K.H.J. Buschow, E.P. Wohlfarth (Eds.).
Hidnert P., Kirby R.K. Thermal expansion and phase transformations of low-expanding cobalt-iron-chromium alloys. J. Res. Natl. Bur. Stand. 1955, 55:29-37.
Hyun S., Torquato S. Optimal and manufacturable two-dimensional, Kagome-like cellular solids. J. Mater. Res. 2002, 17:137.
Schapery R.A. Thermal expansion coefficients of composite materials based on energy principles. J. Comp. Mater. 1968, 2:380-404.
Lu T.J., Hutchinson J.W. Effect of matrix cracking and interface sliding on the thermal expansion of fibre-reinforced composites. Composites 1995, 26:403-414.
Hutchinson J.W., Jensen H.M. Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 1990, 9:139-163.
Sigmund O., Torquato S. Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 1997, 45:1037-1067.
Nam T.N., Requena G., Degischer P. Thermal expansion behaviour of aluminum matrix composites with densely packed SiC particles. Compos. Part A 2008, 39:856-865.
Elomari S., Boukhili R., San Marchi C., Mortensen A., Lloyd D.J. Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites. J. Mater. Sci. 1997, 32:2131-2140.
Schöbel M., Altendorfer W., Degischer H.P., Vaucher S., Buslaps T., Di Michiel M., Hofmann M. Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications. Compos. Sci. Technol. 2011, 71:724-733.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.