[en] This paper presents and experimental and theoretical investigation of a novel nonlinear aeroelastic system. It consists of a wing with pitch and flap degrees of freedom, suspended from a leaf spring secured in a nonlinear clamp. Both the structural and the aerodynamic forces acting on the wing can be nonlinear, depending on the amplitude of oscillations. Wind tunnel experiments show that the system undergoes a supercritical Hopf bifurcation that leads to small amplitude limit cycle oscillations. At a particular airspeed, the pitch amplitude jumps to a much higher value and dynamic stall starts to occur. Three mathematical models of the system are formulated, one based on linear aerodynamics
and two based on the Leishman-Beddoes dynamic stall model. The objective of the modelling is to determine whether the jump in pitch oscillation amplitude is due to dynamic stall. The predictions for amplitude, frequency and mean angle of the limit cycle oscillations are compared to the experimental observations. All three models predict the small amplitude oscillations with satisfactory accuracy. The complete Leishman-Beddoes model predicts the occurrence of a jump in pitch amplitude but the magnitude of this jump is signi cantly overestimated. The other two models completely fail to model the jump. The failure of the Leishman-Beddoes model to predict the correct post-jump oscillation amplitude may be due to the values selected for the model parameters.
Disciplines :
Ingénierie aérospatiale
Auteur, co-auteur :
Verstraelen, Edouard ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Boutet, Johan ; Université de Liège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Grappasonni, Chiara ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Kerschen, Gaëtan ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Dimitriadis, Grigorios ; Université de Liège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Langue du document :
Anglais
Titre :
Theoretical and experimental investigation of a structurally and aerodynamically nonlinear pitch and flap wing
Date de publication/diffusion :
29 juin 2015
Nom de la manifestation :
International Forum on Aeroelasticity and Structural Dynamics
Organisateur de la manifestation :
Central Aerohydrodynamics Institute (TsAGI)
Lieu de la manifestation :
Saint Petersburg, Russie
Date de la manifestation :
from 28-06-2015 to 02-07-2015
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, IFASD 2015
O'Neil, T., Gilliat, H., and Strganac, T. (1996). Investigations of aeroelastic response for a system with continuous structural nonlinearities. In AIAA, ASME, ASCE, AHS, and ASC, 37th, Structures, Structural Dynamics and Materials Conference. Salt Lake City, UT.
Conner, M., Tang, D., Dowell, E., et al (1997). Nonlinear behavior of a typical airfoild section with control surface freeplay: a numerical and experimental study. Journal of Fluids and Structures, 11(1), 89-109.
Mukhopadhyay, V. (1999). Transonic flutter suppression control law design using classical and optimal techniques with wind-tunnel results. In 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference. St. Louis, MO: AIAA.
Abdelkefi, A., Vasconcellos, R., Nayfeh, A., et al (2012). An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dynamics, 71(1-2), 159-173.
Tang, D. and Dowell, E. (2011). Aeroelastic response induced by free play, part 2: Theoretical/experimental correlation analysis. AIAA Journal, 49(11), 2543-2554.
Dimitriadis, G. and Li, J. (2009). Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-speed wind tunnel. AIAA Journal, 47(11), 2577-2596.
Poirel, D. and Mendes, F. (2012). Experimental investigation of small amplitude self-sustained pitch-heave oscillations of a naca0012 airfoil at transitional reynolds numbers. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee.
Razak, N. A., Andrianne, T., and Dimitriadis, G. (2011). Flutter and stall flutter of a rectangular wing in a wind tunnel. AIAA Journal, 49(10), 2258-2271.
Amandolese, X., Michelin, S., and Choquel, M. (2013). Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel. Journal of Fluids and Structures, 43, 244-255.
Platten, M., Wright, J., Cooper, J., et al (2009). Identification of a nonlinear wing structure using an extended modal model. Journal of Aircraft, 46(5), 1614-1626.
Hancock, G., Wright, J., and Simpson, A. (1985). On the teaching of the principles of wing flexure-torsion flutter. Aeronautical Journal, 89, 285-305.
J.G. Leishman, T. S. B. (1989). A semi-empirical model for dynamic stall. Journal of american helicopter society, 34, 3-17.
W. Sheng, F. N. C., R. A. McD. Galbraith (2008). A modified dynamic stall model for low mach numbers. Journal of Solar Energy Engineering, 130, 31013.
Bisplinghoff, R., Ashley, H., and Halfman, R. (1996). Aeroelasticity. Dover Publications Inc.
Fung, Y. (1993). An introduction to the Theory of Aeroelasticity. Dover Publications Inc.
Lee, B., Gong, L., and Wong, Y. (1997). Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity. Journal of Fluids and Structures, 11, 225-246.
Leishman, J. G. (2006). Principle of Helicopter Aerodynamics. Cambridge University Press.