bone; bone metabolism; minerals; mineral deficiency; trace elements; heavy metals; osteoporosis
Abstract :
[en] The human skeleton, made of 206 bones, plays vital roles including supporting the body, protecting organs, enabling movement, and storing minerals. Bones are made of organic structures, intimately connected with an inorganic matrix produced by bone cells. Many elements are ubiquitous in our environment, and many impact bone metabolism. Most elements have antagonistic actions depending on concentration. Indeed, some elements are essential, others are deleterious, and many can be both. Several pathways mediate effects of element deficiencies or excesses on bone metabolism. This paper aims to identify all elements that impact bone health and explore the mechanisms by which they act. To date, this is the first time that the effects of thirty minerals on bone metabolism have been summarized.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
DERMIENCE, Michael ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Analyse, qual. et risques - Labo. de Chimie analytique
Lognay, Georges ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Analyse, qual. et risques - Labo. de Chimie analytique
Mathieu, Françoise; Kashin–Beck Disease Fund asbl-vzw
Goyens, Phillippe; Free Universities of Brussels > Department and Laboratory of Pediatric
West Suitor C., Meyers L.D. Dietary Reference Intakes Research Synthesis: Workshop Summary 2006, National Academies Press, Washington.
Zaichick S., Zaichick V., Karandashev V., Moskvina I. The Effect of Age and Gender on 59 Trace-Element Contents in Human Rib Bone Investigated by Inductively Coupled Plasma Mass Spectrometry 2015, 1-17. Biological Trace Element Research, 2010.
Bronner F. Chapter 22 - Metals in Bone: Aluminum, Boron, Cadmium, Chromium, Lead, Silicon, and Strontium. Principles of Bone Biology 2002, 359-369. Academic Press, San Diego. Second ed. P.B. John, G.R. Lawrence, A.R. Gideon (Eds.).
Li X., Zhang L., Zhu Y., Li Y. Dynamic analysis of exposure to aluminum and an acidic condition on bone formation in young growing rats. Environ. Toxicol. Pharmacol. 2011, 31:295-301.
Malluche H.H. Aluminium and bone disease in chronic renal failure. Nephrol. Dial. Transpl. 2002, 17:21-24.
Pilar Martínez M., Bozzini C., Olivera M., Dmytrenko G., Conti M. Aluminum bone toxicity in immature rats exposed to simulated high altitude. J. Bone Miner. Metab. 2011, 29:526-534.
Krewski D., Yokel R.A., Nieboer E., Borchelt D., Cohen J., Harry J., Kacew S., Lindsay J., Mahfouz A.M., Rondeau V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health Part B 2007, 10:1-269.
Zafar T.A., Teegarden D., Ashendel C., Dunn M.A., Weaver C.M. Aluminum negatively impacts calcium utilization and bone in calcium-deficient rats. Nutr. Res. 2004, 24:243-259.
Hellström H.-O., Michaëlsson K., Mallmin H., Mjöberg B. The aluminium content of bone, and mortality risk. Age Ageing 2008, 37:217-220.
Hellstrom H.-O., Mjoberg B., Mallmin H., Michaelsson K. No association between the aluminium content of trabecular bone and bone density, mass or size of the proximal femur in elderly men and women. BMC Musculoskelet Disord. 2006, 7:69.
Mahieu S.T., Navoni J., Millen N., del Carmen Contini M., Gonzalez M., Elías M.M. Effects of aluminum on phosphate metabolism in rats: a possible interaction with vitamin D 3 renal production. Arch. Toxicol. 2004, 78:609-616.
Rousselle A.V., Heymann D., Demais V., Charrier C., Passuti N., Basle M. Influence of metal ion solutions on rabbit osteoclast activities in vitro. Histol. Histopathol. 2002, 17:1025-1032.
Rodriguez M., Felsenfeld A., Llach F. Aluminum administration in the rat separately affects the osteoblast and bone mineralization. J. Bone Miner. Res. 1990, 5:59-67.
Cannata Andía J.B. Aluminium toxicity: its relationship with bone and iron metabolism. Nephrol. Dial. Transplant. 1996, 11:69.
Jacotot B., Le Parco J.-C. Nutrition Et Alimentation 1992, Paris, Masson. Second éd.
Uthus E.O. Diethyl maleate an in vivo chemical depletor of glutathione, affects the response of male and female rats to arsenic deprivation. Biol. Trace Elem. Res. 1994, 46:247-259.
Uthus E.O. Effects of arsenic deprivation in hamsters. Magnes. Trace Elem. 1990, 9:227-232.
Nielsen F.H. Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. FASEB J. 1991, 5:2661-2667.
Aybar Odstrcil AdC, Carino S.N., Diaz Ricci J.C., Mandalunis P.M. Effect of arsenic in endochondral ossification of experimental animals. Exp. Toxicol. Pathol. 2010, 62:243-249.
Uthus E.O., Nielsen F.H. Determination of the possible requirement and reference dose levels for arsenic in humans. Scandinavian J. Work Environ. Health 1993, 19(Suppl. 1):137-138.
Hu Y.-C., Cheng H.-L., Hsieh B.-S., Huang L.-W., Huang T.-C., Chang K.-L. Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone 2012, 50:1406-1415.
Ishimi Y., Miyaura C., Jin C.H., Akatsu T., Abe E., Nakamura Y., Yamaguchi A., Yoshiki S., Matsuda T., Hirano T. IL-6 is produced by osteoblasts and induces bone resorption. J. Immunol. 1990, 145:3297-3303.
Akbal A., Yilmaz H., Tutkun E. Arsenic exposure associated with decreased bone mineralization in male. Aging Male 2013, 1-3. [Epub ahead of print].
Kippler M., Wagatsuma Y., Rahman A., Nermell B., Persson L-Å., Raqib R., Vahter M. Environmental exposure to arsenic and cadmium during pregnancy and fetal size: a longitudinal study in rural Bangladesh. Reprod. Toxicol. 2012, 34:504-511.
Lever J.H. Paget's disease of bone in Lancashire and arsenic pesticide in cotton mill wastewater: a speculative hypothesis. Bone 2002, 31:434-436.
M. Ito, N. Matsuka, M. Izuka, S. Haito, Y. Sakai, R. Nakamura, H. Segawa, M. Kuwahata, H. Yamamoto, W.J. Pike, K.-i. Miyamoto, Characterization of inorganic phosphate transport in osteoclast-like cells (2005).
Hunt C.D. Biochemical effects of physiological amounts of dietary boron. J. Trace Elem. Exp. Med. 1996, 9:185-213.
Nielsen F.H. Boron in human and animal nutrition. Plant Soil 1997, 193:199-208.
Armstrong T.A., Spears J.W. Effect of dietary boron on growth performance, calcium and phosphorus metabolism, and bone mechanical properties in growing barrows. J. Anim. Sci. 2001, 79:3120-3127.
Naghii M.R., Torkaman G., Mofid M. Effects of boron and calcium supplementation on mechanical properties of bone in rats. Biofactors 2006, 28:195-201.
Newnham R. Essentiality of boron for healthy bones and joints. Environ. Health Prospect. 1994, 102:83-85.
Nielsen F.H. Micronutrients in parenteral nutrition: boron, silicon, and fluoride. Gastroenterology 2009, 137:S55-S60.
Devirian T.A., Volpe S.L. The physiological effects of dietary boron. Crit. Rev. Food Sci. Nutr. 2003, 43:219-231.
Nielsen F., Stoecker B., Penland J. Boron as a dietary factor for bone microarchitecture and central nervous system function. Advances in Plant and Animal Boron Nutrition 2007, 277-290. Springer, Netherlands. F. Xu, H. Goldbach, P. Brown, R. Bell, T. Fujiwara, C. Hunt, S. Goldberg, L.E.I. Shi (Eds.).
Nielsen F.H. Is boron nutritionally relevant?. Nutr. Rev. 2008, 66:183-191.
Gorustovich A.A., Steimetz T., Nielsen F.H., Guglielmotti M.B. Histomorphometric study of alveolar bone healing in rats fed a boron-deficient diet. Anat. Rec.: Adv. Integr. Anat. Evol. Biol. 2008, 291:441-447.
Gorustovich A.A., Steimetz T., Nielsen F.H., Guglielmotti M.B. A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Arch. Oral Biol. 2008, 53:677-682.
Naghii M.R., Mofid M. Elevation of biosynthesis of endogenous 17-B oestradiol by boron supplementation: one possible role of dietary boron consumption in humans. J. Nutr. Environ. Med. 2008, 17:127-135.
Sarazin M., Alexandre C., Thomas T. Influence of trace element, protein, lipid, carbohydrate, and vitamin intakes on bone metabolism. Rev. Rhum. 2000, 67:486-497.
Sheng M., Janette Taper L., Veit H., Qian H., Ritchey S., William Lau K. Dietary boron supplementation enhanced the action of estrogen, but not that of parathyroid hormone, to improve trabecular bone quality in ovariectomized rats. Biol. Trace Elem. Res. 2001, 82:109-123.
Sheng M., Taper L.J., Veit H., Thomas E., Ritchey S., Lau K.H.W. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats. Biol. Trace Elem. Res. 2001, 81:29-45.
Nielsen F.H., Meacham S.L. Growing evidence for human health benefits of boron. J. Evidence-Based Complem. Altern. Med. 2011, 16:169-180.
Brzóska M.M., Moniuszko-Jakoniuk J. Disorders in bone metabolism of female rats chronically exposed to cadmium. Toxicol. Appl. Pharmacol. 2005, 202:68-83.
Engström A., Michaëlsson K., Suwazono Y., Wolk A., Vahter M., Åkesson A. Long-term cadmium exposure and the association with bone mineral density and fractures in a population-based study among women. J. Bone Miner. Res. 2011, 26:486-495.
Kazantzis G. Cadmium osteoporosis and calcium metabolism. BioMetals 2004, 17:493-498.
Wang H., Zhu G., Shi Y., Weng S., Jin T., Kong Q., Nordberg G.F. Influence of environmental cadmium exposure on forearm bone density. J. Bone Miner. Res. 2003, 18:553-560.
Wu Q., Magnus J., Hentz J. Urinary cadmium, osteopenia, and osteoporosis in the US population. Osteoporosis Int. 2010, 21:1449-1454.
Zhu G., Wang H., Shi Y., Weng S., Jin T., Kong Q., Nordberg G.F. Environmental cadmium exposure and forearm bone density. Biometals 2004, 17:499-503.
Åkesson A., Bjellerup P., Lundh T., Lidfeldt J., Nerbrand C., Samsioe G., Skerfving S., Vahter M. Cadmium-induced effects on bone in a population-based study of women. Environ. Health Perspect. 2006, 114.
Alfvén T., Elinder C.-G., Hellström L., Lagarde F., Järup L. Cadmium exposure and distal forearm fractures. J. Bone Miner. Res. 2004, 19:900-905.
Brzóska M.M., Majewska K., Kupraszewicz E. Effects of low, moderate and relatively high chronic exposure to cadmium on long bones susceptibility to fractures in male rats. Environ. Toxicol. Pharmacol. 2010, 29:235-245.
Chen X., Zhu G., Jin T., Lei L., Liang Y. Bone mineral density is related with previous renal dysfunction caused by cadmium exposure. Environ. Toxicol. Pharmacol. 2011, 32:46-53.
Bhattacharyya M.H. Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol. Appl. Pharmacol. 2009, 238:258-265.
Brzóska M.M., Majewska K., Moniuszko-Jakoniuk J. Mineral status and mechanical properties of lumbar spine of female rats chronically exposed to various levels of cadmium. Bone 2004, 34:517-526.
Chen X., Zhu G., Jin T., Gu S. Effects of cadmium on forearm bone density after reduction of exposure for 10 years in a Chinese population. Environ. Int. 2009, 35:1164-1168.
Sughis M., Penders J., Haufroid V., Nemery B., Nawrot T. Bone resorption and environmental exposure to cadmium in children: a cross - sectional study. Environ. Health 2011, 10:104.
Cai Y., Aoshima K., Katoh T., Teranishi H., Kasuya M. Renal tubular dysfunction in male inhabitants of a cadmium-polluted area in toyama, japan-an eleven-year follow-up study. J. Epidemiol. 2001, 11:180-189.
Inaba T., Kobayashi E., Suwazono Y., Uetani M., Oishi M., Nakagawa H., Nogawa K. Estimation of cumulative cadmium intake causing itai-itai disease. Toxicol. Lett. 2005, 159:192-201.
Nogawa K., Tsuritani I., Kido T., Honda R., Yamada Y., Ishizaki M. Mechanism for bone disease found in inhabitants environmentally exposed to cadmium: decreased serum 1α, 25-dihydroxyvitamin D level. Int. Arch. Occup. Environ. Health 1987, 59:21-30.
Uchida H., Kurata Y., Hiratsuka H., Umemura T. The effects of a vitamin D-deficient diet on chronic cadmium exposure in rats. Toxicol. Pathol. 2010, 38:730-737.
Brzóska M.M., Rogalska J., Kupraszewicz E. The involvement of oxidative stress in the mechanisms of damaging cadmium action in bone tissue: a study in a rat model of moderate and relatively high human exposure. Toxicol. Appl. Pharmacol. 2011, 250:327-335.
Trzcinka-Ochocka M., Jakubowski M., Szymczak W., Janasik B., Brodzka R. The effects of low environmental cadmium exposure on bone density. Environ. Res. 2010, 110:286-293.
Beattie J.H., Avenell A. Trace Element Nutrition and Bone Metabolism 1992, ROYAUME-UNI: Cambridge University Press, Cambridge.
Engström A., Skerving S., Lidfeldt J., Burgaz A., Lundh T., Samsioe G., Vahter M., Åkesson A. Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D. Environ. Res. 2009, 109:188-192.
Schutte R., Nawrot T.S., Richart T., Thijs L., Vanderschueren D., Kuznetsova T., Van Hecke E., Roels H.A., Staessen J.A. Bone resorption and environmental exposure to cadmium in women: a population study. Environ. Health Perspect. 2008, 116.
Yokota H., Tonami H. Experimental studies on the bone metabolism of male rats chronically exposed to cadmium intoxication using dual-energy X-ray absorptiometry. Toxicol. Ind. Health 2008, 24:161-170.
Noël L., Guérin T., Kolf-Clauw M. Subchronic dietary exposure of rats to cadmium alters the metabolism of metals essential to bone health. Food Chem. Toxicol. 2004, 42:1203-1210.
Sredzinska K., Galicka A., Brzoska M.M., Gindzienski Effect of Cadmium on Glycosaminoglycans in the Bone of Rats 2004, ALLEMAGNE: Springer, Heidelberg.
Chen X., Zhu G., Gu S., Jin T., Shao C. Effects of cadmium on osteoblasts and osteoclasts in vitro. Environ. Toxicol. Pharmacol. 2009, 28:232-236.
Calcium Heaney R.P. Dairy products and osteoporosis. J. Am. Coll. Nutr. 2000, 19:83S-99S.
Huncharek M., Muscat J., Kupelnick B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone 2008, 43:312-321.
Rizzoli R., Bianchi M.L., Garabédian M., McKay H.A., Moreno L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46:294-305.
Gibbons M.J., Gilchrist N.L., Frampton C., Maguire P., Reilly P.H., March R.L., Wall C.R. The effects of a high calcium dairy food on bone health in pre-pubertal children in New Zealand. Asia Pac. J. Clin. Nutr. 2004, 13:341-347.
Winzenberg T., Shaw K., Fryer J., Jones G. Calcium Supplementation for Improving Bone Mineral Density in Children. In: Cochrane Database of Systematic Reviews 2015, John Wiley & Sons, Ltd., 2006.
Kaji H., Sugimoto T., Kanatani M., Chihara K. High extracellular calcium stimulates osteoclast-like cell formation and bone-resorbing activity in the presence of osteoblastic cells. J. Bone Miner. Res. 1996, 11:912-920.
Asagiri M., Takayanagi H. The molecular understanding of osteoclast differentiation. Bone 2007, 40:251-264.
Sugimoto T., Kanatani M., Kano J., Kobayashi T., Yamaguchi T., Fukase M., Chihara K. IGF-I mediates the stimulatory effect of high calcium concentration on osteoblastic cell proliferation. Am. J. Physiol. - Endocrinol. Metab. 1994, 266:E709-E716.
Miyauchi A., Hruska K.A., Greenfield E.M., Duncan R., Alvarez J., Barattolo R., Colucci S., Zambonin-Zallone A., Teitelbaum S.L., Teti A. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption. J. Cell Biol. 1990, 111:2543-2552.
Siddiqui T., Lively S., Vincent C., Schlichter L. Regulation of podosome formation, microglial migration and invasion by Ca2+-signaling molecules expressed in podosomes. J. Neuroinflammation 2012, 9:250.
Martin A. Apports Nutritionnels Conseillés Pour La Population Française 2000, Tec & Doc Editions, Paris. Third éd.
Junaid M., Murthy R.C., Saxena D.K. Embryotoxicity of orally administered chromium in mice: Exposure during the period of organogenesis. Toxicol. Lett. 1996, 84:143-148.
Kanojia R.K., Junaid M., Murthy R.C. Embryo and fetotoxicity of hexavalent chromium: a long-term study. Toxicol. Lett. 1998, 95:165-172.
Soudani N., Ibtissem Ben Amara Troudi A., Bouaziz H., Boudawara T., Zeghal N. Oxidative stress induced by chromium (VI) in bone of suckling rats. Toxicol. Ind. Health 2011, 27:724-734.
Sansone V., Pagani D., Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin. Cases Mineral Bone Metab. 2013, 10:34-40.
Fleury C., Petit A., Mwale F., Antoniou J., Zukor D.J., Tabrizian M., Huk O.L. Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: morphology, cytotoxicity, and oxidative stress. Biomaterials 2006, 27:3351-3360.
Zijlstra W.P., Bulstra S.K., van Raay J.J.A.M., van Leeuwen B.M., Kuijer R. Cobalt and chromium ions reduce human osteoblast-like cell activity in vitro, reduce the OPG to RANKL ratio, and induce oxidative stress. J. Orthop. Res. 2012, 30:740-747.
Wang J.Y., Wicklund B.H., Gustilo R.B., Tsukayama D.T. Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. Biomaterials 1996, 17:2233-2240.
Anissian L., Stark A., Dahlstrand H., Granberg B., Good V., Bucht E. Cobalt ions influence proliferation and function of human osteoblast-like cells. Acta Orthop. 2002, 73:369-374.
Queally J.M., Devitt B.M., Butler J.S., Malizia A.P., Murray D., Doran P.P., O'Byrne J.M. Cobalt ions induce chemokine secretion in primary human osteoblasts. J. Orthop. Res. 2009, 27:855-864.
Tkaczyk C., Huk O.L., Mwale F., Antoniou J., Zukor D.J., Petit A., Tabrizian M. Effect of chromium and cobalt ions on the expression of antioxidant enzymes in human U937 macrophage-like cells. J. Biomed. Mater. Res. A 2010, 94A:419-425.
Tkaczyk C., Petit A., Antoniou J., Zukor D.J., Tabrizian M., Huk O.L. Significance of elevated blood metal ion levels in patients with metal-on-metal prostheses: an evaluation of oxidative stress markers. Open Orthop. J. 2010, 4.
Devitt B.M., Queally J.M., Vioreanu M., Butler J.S., Murray D., Doran P.P., O'Byrne J.M. Cobalt ions induce chemokine secretion in a variety of systemic cell lines. Acta Orthop. 2010, 81:756-764.
Haynes D.R., Rogers S.D., Hay S., Pearcy M.J., Howie D.W. The differences in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J. Bone Joint Surg. 1993, 75:825-834. American volume.
MacQuarrie R.A., Fang Chen Y., Coles C., Anderson G.I. Wear-particle-induced osteoclast osteolysis: the role of particulates and mechanical strain. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 69B:104-112.
Dollwet H.H.A., Sorenson J.R.J. Roles of copper in bone maintenance and healing. Biol. Trace Elem. Res. 1988, 18:39-48.
Keen C.L., Uriu-Hare J.Y., Hawk S.N., Jankowski M.A., Daston G.P., Kwik-Uribe C.L., Rucker R.B. Effect of copper deficiency on prenatal development and pregnancy outcome. Am. J. Clin. Nutr. 1998, 67:1003S-1011S.
Kodama H., Murata Y., Kobayashi M. Clinical manifestations and treatment of Menkes disease and its variants. Pediatr. Int. 1999, 41:423-429.
Aaseth J., Boivin G., Andersen O. Osteoporosis and trace elements -an overview. J. Trace Elem. Med. Biol. 2012, 26:149-152.
Saltman P.D., Strause L.G. The role of trace minerals in osteoporosis. J. Am. Coll. Nutr. 1993, 12:384-389.
Hillier S., Inskip H., Coggon D., Cooper C. Water fluoridation and osteoporotic fracture. Community Dent. Health 1996, 13(Suppl. 2):63-68.
Lau K.H.W., Baylink D.J. Molecular mechanism of action of fluoride on bone cells. J. Bone Miner. Res. 1998, 13:1660-1667.
Lehmann R., Wapniarz M., Hofmann B., Pieper B., Haubitz I., Allolio B. Drinking water fluoridation: bone mineral density and hip fracture incidence. Bone 1998, 22:273-278.
Vestergaard P., Jorgensen N.R., Schwarz P., Mosekilde L. Effects of treatment with fluoride on bone mineral density and fracture risk - a meta-analysis. Osteoporosis Int. 2008, 19:257-268.
Allolio B., Lehmann R. Drinking water fluoridation and bone. Exp. Clin. Endocrinol. Diabetes 1999, 107:12-20.
Cauley J.A., Buhari A.M., Murphy P.A., Riley T.J. Effects of fluoridated drinking water on bone mass and fractures: the study of osteoporotic fractures. J. Bone Miner. Res. 1995, 10:1076-1086.
Everett E.T. Fluoride's effects on the formation of teeth and bones, and the influence of genetics. J. Dent. Res. 2011, 90:552-560.
Balena R., Kleerekoper M., Foldes J.A., Shih M.S., Sudhaker Rao D., Schober H.C., Parfitt A.M. Effects of different regimens of sodium fluoride treatment for osteoporosis on the structure, remodeling and mineralization of bone. Osteoporosis Int. 1998, 8:428-435.
Vigorita V.J., Suda M.K. The microscopic morphology of fluoride-induced bone. Clin. Orthop. Relat. Res. 1983, 177:274-282.
Lau K.H.W., Goodwin C., Arias M., Mohan S., Baylink D.J. Bone cell mitogenic action of fluoroaluminate and aluminum fluoride but not that of sodium fluoride involves upregulation of the insulin-like growth factor system. Bone 2002, 30:705-711.
Turner C.H., Garetto L.P., Dunipace A.J., Zhang W., Wilson M.E., Grynpas M.D., Chachra D., McClintock R., Peacock M., Stookey G.K. Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength, in rabbits. Calcif. Tissue Int. 1997, 61:77-83.
Bockman R. The effects of gallium nitrate on bone resorption. Semin. Oncol. 2003, 30:5-12.
Chitambar C. Gallium nitrate revisited. Seminars Oncol. 2003, 30:1-4.
Hall T.J., Chambers T.J. Gallium inhibits bone resorption by a direct effect on osteoclasts. Bone Miner. 1990, 8:211-216.
Lakatos P., Mong S., Stern P.H. Gallium nitrate inhibits bone resorption and collagen synthesis in neonatal mouse calvariae. J. Bone Miner. Res. 1991, 6:1121-1126.
Stern L.S., Matkovic V., Weisbrode S.E., Apseloff G., Shepard D.R., Mays D.C., Gerber N. The effects of gallium nitrate on osteopenia induced by ovariectomy and a low-calcium diet in rats. Bone Miner. 1994, 25:59-69.
Verron E., Bouler J.M., Scimeca J.C. Gallium as a potential candidate for treatment of osteoporosis. Drug Discovery Today 2012, 17:1127-1132.
Ma Z., Fu Q. Comparison of the therapeutic effects of yeast-incorporated gallium with those of inorganic gallium on ovariectomized osteopenic rats. Biol. Trace Elem. Res. 2010, 134:280-287.
Ma Z., Fu Q. Therapeutic effect of organic gallium on ovariectomized osteopenic rats by decreased serum minerals and increased bone mineral content. Biol. Trace Elem. Res. 2010, 133:342-349.
Donnelly R., Bockman R.S., Doty S.B., Boskey A.L. Bone particles from gallium-treated rats are resistant to resorption in vivo. Bone Miner. 1991, 12:167-179.
van der Eerden B.C.J., Hoenderop J.G.J., de Vries T.J., Schoenmaker T., Buurman C.J., Uitterlinden A.G., Pols H.A.P., Bindels R.J.M., van Leeuwen J.P.T.M. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17507-17512.
Verron E., Loubat A., Carle G.F., Vignes-Colombeix C., Strazic I., Guicheux J., Rochet N., Bouler J.M., Scimeca J.C. Molecular effects of gallium on osteoclastic differentiation of mouse and human monocytes. Biochem. Pharmacol. 2012, 83:671-679.
Seaborn C., Nielsen F. Effects of germanium and silicon on bone mineralization. Biol. Trace Elem. Res. 1994, 42:151-164.
Fujii A., Kuboyama N., Yamane J., Nakao S., Furukawa Y. Effect of organic germanium compound (Ge-132) on experimental osteoporosis in rats. Gen. Pharmacol.: Vasc. Syst. 1993, 24:1527-1532.
Jiang G., Matsumoto H., Yamane J., Kuboyama N., Akimoto Y., Fujii A. Prevention of trabecular bone loss in the mandible of ovariectomized rats. J. Oral Sci. 2004, 46:75-85.
Matsumoto H., Silverton S.F., Debolt K., Shapiro I.M. Superoxide dismutase and catalase activities in the growth cartilage: relationship between oxidoreductase activity and chondrocyte maturation. J. Bone Miner. Res. 1991, 6:569-574.
Qin D.-W., Gu Z., Dai L., Ji C. Protective effects of gallium, germanium, and strontium against ovariectomized osteoporosis in rats. Biol. Trace Elem. Res. 2013, 153:350-354.
Hall T.J., Jeker H., Nyugen H., Schaeublin M. Gold salts inhibit osteoclastic bone resorption in vitro. Inflamm. Res. 1996, 45:230-233.
Katz J.M., Gray D.H. The in vitro effect of gold complexes on bone resorption. J. Orthop. Res. 1986, 4:188-193.
Chiellini C., Casini A., Cochet O., Gabbiani C., Ailhaud G., Dani C., Messori L. Amri E-Z the influence of auranofin, a clinically established antiarthritic gold drug, on bone metabolism: analysis of its effects on human multipotent adipose-derived stem cells, taken as a model. Chem. Biodivers. 2008, 5:1513-1520.
Vargas S.J., Jones T.G., Hurley M.M., Raisz L.G. Comparison of the effects of auranofin, gold sodium thiomalate, and penicillamine on resorption of cultured fetal rat long bones. J. Bone Miner. Res. 1987, 2:183-189.
Sul O.-J., Kim J.-C., Kyung T.-W., Kim H.-J., Kim Y.-Y., Kim S.-H., Kim J.-S., Choi H.-S. Gold nanoparticles inhibited the receptor activator of nuclear factor-κb ligand (RANKL)-induced osteoclast formation by acting as an antioxidant bioscience. Biotechnol. Biochem. 2010, 74:2209-2213.
Harris M.M., Houtkooper L.B., Stanford V.A., Parkhill C., Weber J.L., Flint-Wagner H., Weiss L., Going S.B., Lohman T.G. Dietary iron is associated with bone mineral density in healthy postmenopausal women. J. Nutr. 2003, 133:3598-3602.
Katsumata S-i Katsumata-Tsuboi R., Uehara M., Suzuki K. Severe iron deficiency decreases both bone formation and bone resorption in rats. J. Nutr. 2009, 139:238-243.
Medeiros D.M., Plattner A., Jennings D., Stoecker B. Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. J. Nutr. 2002, 132:3135-3141.
Medeiros D.M., Stoecker B., Plattner A., Jennings D., Haub M. Iron deficiency negatively affects vertebrae and femurs of rats independently of energy intake and body weight. J. Nutr. 2004, 134:3061-3067.
Parelman M., Stoecker B., Baker A., Medeiros D. Iron restriction negatively affects bone in female rats and mineralization of hFOB osteoblast cells. Exp. Biol. Med. 2006, 231:378-386.
Jian J., Pelle E., Huang X. Iron and menopause: does increased iron affect the health of postmenopausal women. Antioxid. Redox Signal. 2009, 11:2939-2943.
Kim B.J., Lee S.H., Koh J.M., Kim G.S. The association between higher serum ferritin level and lower bone mineral density is prominent in women ≥45 years of age (KNHANES 2008-2010). Osteoporosis Int. 2013, 1-11.
Kim B.-J., Ahn S.H., Bae S.J., Kim E.H., Lee S.-H., Kim H.-K., Choe J.W., Koh J.-M., Kim G.S. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J. Bone Miner. Res. 2012, 7:2279-2290.
Mandalunis P.M., Ubios A.M. Experimental renal failure and iron overload: a histomorphometric study in rat tibia. Toxicol. Pathol. 2005, 33:398-403.
Tsay J., Yang Z., Ross F.P., Cunningham-Rundles S., Lin H., Coleman R., Mayer-Kuckuk P., Doty S.B., Grady R.W., Giardina P.J., Boskey A.L., Vogiatzi M.G. Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 2010, 116:2582-2589.
Yamasaki K., Hagiwara H. Excess iron inhibits osteoblast metabolism. Toxicol. Lett. 2009, 191:211-215.
Yang Q., Jian J., Abramson S.B., Huang X. Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J. Bone Miner. Res. 2011, 26:1188-1196.
Zarjou A., Jeney V., Arosio P., Poli M., Zavaczki E., Balla G., Balla J. Ferritin ferroxidase activity: a potent inhibitor of osteogenesis. J. Bone Miner. Res. 2010, 25:164-172.
Messer J.G., Kilbarger A.K., Erikson K.M., Kipp D.E. Iron overload alters iron-regulatory genes and proteins, down-regulates osteoblastic phenotype, and is associated with apoptosis in fetal rat calvaria cultures. Bone 2009, 45:972-979.
Doyard M., Fatih N., Monnier A., Island M.L., Aubry M., Leroyer P., Bouvet R., Chalès G., Mosser J., Loréal O., Guggenbuhl P. Iron excess limits HHIPL-2 gene expression and decreases osteoblastic activity in human MG-63 cells. Osteoporosis Int. 2012, 23:2435-2445.
Zhao G-y, Zhao L-p, He Y-f, Li G.-F., Gao C., Li K., Xu Y-j A comparison of the biological activities of human osteoblast hFOB1. 19 Between iron excess and iron deficiency. Biol. Trace Elem. Res. 2012, 150:487-495.
He Y.-F., Ma Y., Gao C., Zhao G-y Zhang L.-L., Li G.-F., Pan Y.-Z., Li K., XU Y.-J. Iron overload inhibits osteoblast biological activity through oxidative stress. Biol. Trace Elem. Res. 2013, 152:292-296.
Isomura H., Fujie K., Shibata K., Inoue N., Iizuka T., Takebe G., Takahashi K., Nishihira J., Izumi H., Sakamoto W. Bone metabolism and oxidative stress in postmenopausal rats with iron overload. Toxicology 2004, 197:92-99.
Jia P., Xu Y.J., Zhang Z.L., Li K., Li B., Zhang W., Yang H. Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. J. Orthop. Res. 2012, 30:1843-1852.
Berglund M., Åkesson A., Bjellerup P., Vahter M. Metal-bone interactions. Toxicol. Lett. 2000, 112-113:219-225.
Khalil N., Cauley J.A., Wilson J.W., Talbott E.O., Morrow L., Hochberg M.C., Hillier T.A., Muldoon S.B., Cummings S.R. Relationship of Blood Lead Levels to Incident Nonspine Fractures and Falls in Older Women: The Study of Osteoporotic Fractures. J. Bone Miner. Res. 2008, 23:1417-1425.
Carmouche J., Puzas J.E., Zhang X., Tiyapatanaputi P., Cory-Slechta D.A., Gelein R., Zuscik M., Rosier R.N., Boyce B.F., O'Keefe R.J., Schwarz E.M. Lead Exposure Inhibits Fracture Healing and Is Associated with Increased Chondrogenesis, Delay in Cartilage Mineralization, and a Decrease in Osteoprogenitor Frequency. Environ. Health Perspect. 2005, 113.
Conti M., Bozzini C., Facorro G., Lee C., Mandalunis P., Piehl L., Piñeiro A., Terrizzi A., Martínez M. Lead Bone Toxicity in Growing Rats Exposed to Chronic Intermittent Hypoxia. Bull. Environ. Contam. Toxicol. 2012, 89:693-698.
Conti M., Terrizzi A., Lee C., Mandalunis P., Bozzini C., Piñeiro A. Martínez Md, Effects of Lead Exposure on Growth and Bone Biology in Growing Rats Exposed to Simulated High Altitude. Bull. Environ. Contam. Toxicol. 2012, 88:1033-1037.
Eric E.B., Jason R.M., Tzong-Jen S., Deborah A.C.-S., Andrew J.B., Michael J.Z., Puzas J.E. Heavy Metal Lead Exposure, Osteoporotic-like Phenotype in an Animal Model, and Depression of Wnt Signaling. Environ. Health Perspect. 2012, 121.
González-Riola J., Hernández E.R., Escribano A., Revilla M., Ca S., Villa L.F., Rico H. Effect of lead on bone and cartilage in sexually mature rats: a morphometric and histomorphometry study. Environ. Res. 1997, 74:91-93.
Hamilton J.D., O'flaherty E.J. Effects of lead exposure on skeletal development in rats. Toxicol. Sci. 1994, 22:594-604.
Hamilton J.D., O'flaherty E.J. Influence of lead on mineralization during bone growth. Toxicol. Sci. 1995, 26:265-271.
Jackson L.W., Cromer B.A., Panneerselvamm A. Association between bone turnover, micronutrient intake, and blood lead levels in pre- and postmenopausal women, NHANES 1999-2002. Environ. Health Perspect. 2010, 118:1590-1596.
Monir A.U., Gundberg C.M., Yagerman S.E., van der Meulen M.C.H., Budell W.C., Boskey A.L., Dowd T.L. The effect of lead on bone mineral properties from female adult C57/BL6 mice. Bone 2010, 47:888-894.
Ronis M.J.J., Aronson J., Gao G.G., Hogue W., Skinner R.A., Badger T.M., Lumpkin C.K. Skeletal effects of developmental lead exposure in rats. Toxicol. Sci. 2001, 62:321-329.
Ronis M.J.J., Badger T.M., Shema S.J., Roberson P.K., Shaikh F. Effects on pubertal growth and reproduction in rats exposed to lead perinatally or continuously throughout development. J. Toxicol. Environ. Health Part A 1998, 53:327-341.
Angle C., Thomas D., Swanson S. Lead inhibits the basal and stimulated responses of a rat osteblast- like cell line ROS 17/2.8 to 1,25 dihydroxyviatmin D3 and IGF-1. Toxicol. Appl. Pharmacol. 1990, 103:281-287.
Sauk J., Smith T., Silbergeld E., Fowler B., Somerman M. Lead inhibits secretion of osteonectin/SPARC without significantly altering collagen or Hsp47 production in osteoblast-like ROS 17/2.8. Toxicol. Appl. Pharmacol. 1992, 116:240-247.
Zuscik M., Ma L., Buckley T., Puzas J., Drissi H., Schwarz E., O'Keefe R. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations. Environ. Health Perspect. 2007, 115:1276-1282.
Dowd T.L., Rosen J.F., Mints L., Gundberg C.M. The effect of Pb2+ on the structure and hydroxyapatite binding properties of osteocalcin. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 2001, 1535:153-163.
Szalat A., Mazeh H., Freund H.R. Lithium-associated hyperparathyroidism: report of four cases and review of the literature. Eur. J. Endocrinol. 2009, 160:317-323.
Laroche M., Lamboley V., Amigues J., Cantagrel A., Mazières B. Hyperparathyroidism during lithium therapy. Two new cases. Rev. Rhum. Engl. 1997, 64:132-134.
Lewicki M., Paez H., Mandalunis P.M. Effect of lithium carbonate on subchondral bone in sexually mature Wistar rats. Exp. Toxicol. Pathol. 2006, 58:197-201.
Cohen O., Rais T., Lepkifker E., Vered I. Lithium carbonate therapy is not a risk factor for osteoporosis. Horm. Metab. Res. 1998, 30:594-597.
Clément-Lacroix P., Ai M., Morvan F., Roman-Roman S., Vayssière B., Belleville C., Estrera K., Warman M.L., Baron R., Rawadi G. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:17406-17411.
Li J., Khavandgar Z., Lin S.-H., Murshed M. Lithium chloride attenuates BMP-2 signaling and inhibits osteogenic differentiation through a novel WNT/GSK3- independent mechanism. Bone 2011, 48:321-331.
Pepersack T., Corazza F., Demulder A., Guns M., Fondu P., Bergmann P. Lithium inhibits calcitriol-stimulated formation of multinucleated cells in human long-term marrow cultures. J. Bone Miner. Res. 1994, 9:645-650.
Satija N.K., Sharma D., Afrin F., Tripathi R.P., Gangenahalli G. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage. PLoS One 2013, 8:e55769.
Zamani A., Omrani G.R., Nasab M.M. Lithium's effect on bone mineral density. Bone 2009, 44:331-334.
Rude R., Gruber H., Norton H., Wei L., Frausto A., Kilburn J. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporosis Int. 2006, 17:1022-1032.
Rude R.K., Gruber H.E., Norton H.J., Wei L.Y., Frausto A., Kilburn J. Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 2005, 37:211-219.
Rude R.K., Singer F.R., Gruber H.E. Skeletal and hormonal effects of magnesium deficiency. J. Am. Coll. Nutr. 2009, 28:131-141.
Vormann J. Magnesium nutrition and metabolism. Mol. Aspects Med. 2003, 24:27-37.
Sctrick L. L'oligothérapie exactement 1991, Editions Roger Jollois, Limoges.
Castiglioni S., Cazzaniga A., Albisetti W., Maier J. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 2013, 5:3022-3033.
Aschner J.L., Aschner M. Nutritional aspects of manganese homeostasis. Mol. Aspects Med. 2005, 26:353-362.
E.F.S.A.Panel on Dietetic Products Nutrition and Allergies (NDA) Scientific opinion on the substantiation of health claims related to manganese and protection of DNA, proteins and lipids from oxidative damage (ID 309), maintenance of bone (ID 310), energy-yielding metabolism (ID 311), and cognitive function (ID 340) pursuant to article 13(1) of regulation (EC) No 1924/2006. EFSA J. 2009, 7:1217-1234.
USEPA Toxicity and Exposure Assessment for Children's Health, Manganese 2007, TEACH Chemical Summary.
Soetan K.O., Olaiya C.O., Oyewole O.E. The importance of mineral elements for humans, domestic animals and plants: a review. Afr. J. Food Sci. 2010, 4:200-222.
Clegg M.S., Donovan S.M., Monaco M.H., Baly D.L., Ensunsa J.L., Keen C.L. The influence of manganese deficiency on serum IGF-1 and IGF binding proteins in the male rat. Exp. Biol. Med. 1998, 219:41-47.
C. West Suitor, L.D. Meyers, Dietary Reference Intakes Research Synthesis: Workshop Summary (accessed: 05.07.10). http://www.iom.edu/Global/News%20Announcements/~/media/48FAAA2FD9E74D95BBDA2236E7387B49.ashx.
Lundholm C.E. Effects of methyl mercury at different dose regimes on eggshell formation and some biochemical characteristics of the eggshell gland mucosa of the domestic fowl. Comp. Biochem. Physiology Part C: Pharmacol. Toxicol. Endocrinol. 1995, 110:23-28.
Suzuki N., Yamamoto M., Watanabe K., Kambegawa A., Hattori A. Both mercury and cadmium directly influence calcium homeostasis resulting from the suppression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. J. Bone Miner. Metab. 2004, 22:439-446.
Hathcock J.N. Vitamin and Mineral Safety 2004, Council for Responsible Nutrition, Washington, DC. Second ed.
Brem J.J., Trulls H.E., Sánchez Negrette M., Ortíz M.L. Osseous tissue damage in rats treated with ammonium tetrathiomolybdate. Rev. Veter. 2009, 20:25-30.
Nadeenko V., Lenchenko V., Genkina S., Arkhipenko T. Effect of wolfram, molybdenum, copper and arsenic on intrauterine fetal development. Farmakol .Toksikol. 1978, 41:620-623.
Vyskocil A., Viau C. Assessment of molybdenum toxicity in humans. J. Appl. Toxicol. 1999, 19:185-192.
Khandare A.L., Kumar U., Shankar P., Rao S. Copper ameliorates fluoride toxicity in fluoride and molybdenum fed rabbits. Biomed. Environ. Sci.: BES 2013, 26:311-313.
Parry N.A., Phillippo M., Reid M., McGaw B., Flint D., Loveridge N. Molybdenum-induced changes in the epiphyseal growth plate. Calcif. Tissue Int. 1993, 53:180-186.
Huttunen M.M., Tillman I., Viljakainen H.T., Tuukkanen J., Peng Z., Pekkinen M., Lamberg-Allardt C.J.E. High dietary phosphate intake reduces bone strength in the growing rat skeleton. J. Bone Miner. Res. 2007, 22:83-92.
Kemi V., Kärkkäinen M., Lamberg-Allardt C. High phosphorus intakes acutely and affect Ca and bone metabolism in a dose-dependent manner in healthy young females. Br. J. Nutr. 2006, 12:545-552.
Kemi V.E., Kärkkäinen M.U.M., Karp H.J., Laitinen K.A.E., Lamberg-Allardt C.J.E. Increased calcium intake does not completely counteract the effects of increased phosphorus intake on bone: an acute dose-response study in healthy females. Br. J. Nutr. 2008, 99:832-839.
Kanatani M., Sugimoto T., Kano J., Kanzawa M., Chihara K. Effect of high phosphate concentration on osteoclast differentiation as well as bone-resorbing activity. J. Cell. Physiol. 2003, 196:180-189.
Yates A.J., Oreffo R.O.C., Mayor K., Mundy G.R. Inhibition of bone resorption by inorganic phosphate is mediated by both reduced osteoclast formation and decreased activity of mature osteoclasts. J. Bone Miner. Res. 1991, 6:473-478.
Fenton T., Lyon A., Eliasziw M., Tough S., Hanley D. Phosphate decreases urine calcium and increases calcium balance: a meta-analysis of the osteoporosis acid-ash diet hypothesis. Nutr. J. 2009, 8:41.
Huttunen M.M., Pietilä P.E., Viljakainen H.T., Lamberg-Allardt C.J.E. Prolonged increase in dietary phosphate intake alters bone mineralization in adult male rats. J. Nutr. Biochem. 2006, 17:479-484.
Karp H.J., Vaihia K.P., Kärkkäinen M.U.M., Niemistö M.J., Lamberg-Allardt C.J.E. Acute effects of different phosphorus sources on calcium and bone metabolism in young women: a whole-foods approach. Calcif. Tissue Int. 2007, 80:251-258.
Lanske B., Densmore M.J., Erben R.G. Vitamin D endocrine system and osteocytes. BoneKEy Rep. 2014, 3.
Shimada T., Hasegawa H., Yamazaki Y., Muto T., Hino R., Takeuchi Y., Fujita T., Nakahara K., Fukumoto S., Yamashita T. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 2004, 19:429-435.
Stahler A.C., Monahan J.L., Dagher J.M., Baker J.D., Markopoulos M.M., Iragena D.B., NeJame B.M., Slaughter R., Felker D., Burggraf L.W., Isaac L.A.C., Grossie D., Gagnon Z.E., Sizemore I.E.P. Evaluating the abnormal ossification in tibiotarsi of developing chick embryos exposed to 1. 0ppm doses of platinum group metals by spectroscopic techniques. Bone 2013, 53.
Kajita M., Hikosaka K., Iitsuka M., Kanayama A., Toshima N., Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic. Res. 2007, 41:615-626.
Watanabe A., Kajita M., Kim J., Kanayama A., Takahashi K., Mashino T., Miyamoto Y. In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology 2009, 20:455105.
Kim W.-K., Kim J.-C., Park H.-J., Sul O.-J., Lee M.-H., Kim J.-S., Choi H.-S. Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis. Exp. Mol. Med. 2012, 44:432-439.
Nomura M., Yoshimura Y., Kikuiri T., Hasegawa T., Taniguchi Y., Deyama Y., Koshiro K-i, Sano H., Suzuki K., Inoue N. Platinum nanoparticles suppress osteoclastogenesis through scavenging of reactive oxygen species produced in RAW264. 7Cells. J. Pharmacol. Sci. 2011, 117:243-252.
Macdonald H.M., Black A.J., Aucott L., Duthie G., Duthie S., Sandison R., Hardcastle A.C., Lanham New S.A., Fraser W.D., Reid D.M. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am. J. Clin. Nutr. 2008, 88:465-474.
Karp H.J., Ketola M.E., Lamberg-Allardt C.J.E. Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women. Br. J. Nutr. 2009, 102:1341-1347.
Sakhaee K., Maalouf N.M., Abrams S.A., Pak C.Y.C. Effects of potassium alkali and calcium supplementation on bone turnover in postmenopausal women. J. Clin. Endocrinol. Metab. 2005, 90:3528-3533.
Harrington M., Cashman K.D. High salt intake appears to increase bone resorption in postmenopausal women but high potassium intake ameliorates this adverse effect. Nutr. Rev. 2003, 61:179-183.
Sellmeyer D.E., Schloetter M., Sebastian A. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J. Clin. Endocrinol. Metab. 2002, 87:2008-2012.
Downey C.M., Horton C.R., Carlson B.A., Parsons T.E., Hatfield D.L., Hallgrímsson B., Jirik F.R. Osteo-chondroprogenitor-specific deletion of the selenocysteine trna gene, trsp, leads to chondronecrosis and abnormal skeletal development: a putative model for Kashin-Beck disease. PLoS Genet 2009, 5:e1000616.
Moreno-Reyes R., Egrise D., Nève J., Pasteels J.-L., Schoutens A. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J. Bone Miner. Res. 2001, 16:1556-1563.
Ren F.L., Guo X., Zhang R.J., Wang S.J., Zuo H., Zhang Z.T., Geng D., Yu Y., Su M. Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats. Osteoarthritis Cartilage 2007, 15:1171-1177.
Li S., Li W., Hu X., Yang L., Xirao R. Soil selenium concentration and Kashin-Beck disease prevalence in Tibet, China. Front. Environ. Sci. Eng. China 2009, 3:62-68.
Tan Ja Zhu W., Wang W., Li R., Hou S., Wang D., Yang L. Selenium in soil and endemic diseases in China. Sci. Total Environ. 2002, 284:227-235.
Chasseur C., Lognay G., Suetens C., Rapten S., Gillet P., Kanyandekwe P., He L., Drolkar P., Wangla R., Bergaux F., Haubruge E., Rinchen L., Wangdu L., Claus W., Mathieu F. The fungal hypotheses. Big Bone Disease. A multidisciplinary approach of Kashin-Beck disease in Tibet Autonomous Region (P.R. China) 2015, 85-100. Gembloux: Les presses agronomiques de gembloux, a.s.b.l., 2008. F. Malaisse, F. Mathieu (Eds.).
Chasseur C., Suetens C., Begaux F., Haubruge E., Wangla R., Rinchen L., Wangdu L., Claus W., Mathieu F. The mineral defiiency hypothesis. Big Bone Disease. A multidisciplinary approach of Kashin-Beck disease in Tibet Autonomous Region (P.R. China) 2015, 101-103. Gembloux: Les presses agronomiques de gembloux, a.s.b.l., 2008. F. Malaisse, F. Mathieu (Eds.).
Chasseur C., Suetens C., Nolard N., Begaux F., Haubruge E. Fungal contamination in barley and Kashin-Beck disease in Tibet. Lancet 1997, 350:1074.
Moreno-Reyes R., Mathieu F., Boelaert M., Begaux F., Suetens C., Rivera M.T., Neve J., Perlmutter N., Vanderpas J. Selenium and iodine supplementation of rural Tibetan children affected by Kashin-Beck osteoarthropathy. Am. J. Clin. Nutr. 2003, 78:137-144.
Moreno-Reyes R., Suetens C., Mathieu F., Begaux F., Zhu D., Rivera M.T., Boelaert M., Nève J., Perlmutter N., Vanderpas J. Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. N. Engl. J. Med. 1998, 339:1112-1120.
Yang C., Wolf E., Röser K., Delling G., Müller P.K. Selenium deficiency and fulvic acid supplementation induces fibrosis of cartilage and disturbs subchondral ossification in knee joints of mice: an animal model study of Kashin-Beck disease. Virchows Arch. 1993, 423:483-491.
Ebert R., Jakob F. Selenium deficiency as a putative risk factor for osteoporosis. Int. Congr. Ser. 2007, 1297:158-164.
Martiniakova M., Bobonova I., Omelka R., Grosskopf B., Stawarz R., Toman R. Structural changes in femoral bone tissue of rats after subchronic peroral exposure to selenium. Acta Vet. Scand. 2013, 55:8.
Turan B., Bayari S., Balcik C., Severcan F., Akkas N. A biomechanical and spectroscopic study of bone from rats with selenium deficiency and toxicity. Biometals 2000, 13:113-121.
Manolagas S.C. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr. Rev. 2010, 31:266-300.
Chung Y.W., Kim T.S., Lee S.Y., Lee S.H., Choi Y., Kim N., Min B.-M., Jeong D.-W., Kim I.Y. Selenite-induced apoptosis of osteoclasts mediated by the mitochondrial pathway. Toxicol. Lett. 2006, 160:143-150.
Moon H.-J., Ko W.-K., Han S.W., Kim D.-S., Hwang Y.-S., Park H.-K., Kwon I.K. Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem. Biophys. Res. Commun. 2012, 418:247-253.
Sun J., Sun Q., Lu S. From selenoprotein to endochondral ossification: a novel mechanism with microRNAs potential in bone related diseases. Med. Hypotheses 2011, 77:807-811.
Burk R.F., Hill K.E., Motley A.K. Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J. Nutr. 2003, 133:1517S-1520S.
Brown K.M., Arthur J.R. Selenium, selenoproteins and human health: a review. Public Health Nutr. 2001, 4:593-599.
Carlisle E.M. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J. Nutr. 1980, 110:1046-1056.
Schwarz K., Milne D.B. Growth-promoting effects of silicon in rats. Nature 1972, 239:333-334.
Elliot M.A., Edwards H.M. Effect of dietary silicon on growth and skeletal development in chickens. J. Nutr. 1991, 121:201-207.
Nielsen F.H., Poellot R. Dietary silicon affects bone turnover differently in ovariectomized and sham-operated growing rats. J. Trace Elem. Exp. Med. 2004, 17:137-149.
Seaborn C., Nielsen F. Dietary silicon and arginine affect mineral element composition of rat femur and vertebra. Biol. Trace Elem. Res. 2002, 89:239-250.
Seaborn C., Nielsen F. Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver. Biol. Trace Elem. Res. 2002, 89:251-261.
Seaborn C., Nielsen F. Silicon deprivation and arginine and cystine supplementation affect bone collagen and bone and plasma trace mineral concentrations in rats. J. Trace Elem. Exp. Med. 2002, 15:113-122.
Maehira F., Iinuma Y., Eguchi Y., Miyagi I., Teruya S. Effects of soluble silicon compound and deep-sea water on biochemical and mechanical properties of bone and the related gene expression in mice. J. Bone Miner. Metab. 2008, 26:446-455.
Reffitt D.M., Ogston N., Jugdaohsingh R., Cheung H.F.J., Evans B.A.J., Thompson R.P.H., Powell J.J., Hampson G.N. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003, 32:127-135.
Sripanyakorn S., Jugdaohsingh R., Thompson R.P.H., Powell J.J. Dietary silicon and bone health. Nutr. Bull. 2005, 30:222-230.
Jugdaohsingh R., Tucker K.L., Qiao N., Cupples L.A., Kiel D.P., Powell J.J. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the framingham offspring cohort. J. Bone Miner. Res. 2004, 19:297-307.
Price C.T., Koval K.J., Silicon Langford J.R. A review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int. J. Endocrinol. 2013, 2013:6.
Jugdaohsingh R. Silicon and bone health. J. Nutr. Health Aging 2007, 11:12.
Hoorn E.J., Rivadeneira F., van Meurs J.B.J., Ziere G., Stricker B.H., Hofman A., Pols H.A.P., Zietse R., Uitterlinden A.G., Zillikens M.C. Mild hyponatremia as a risk factor for fractures: the rotterdam study. J. Bone Miner. Res. 2011, 26:1822-1828.
Kinsella S., Moran S., Sullivan M.O., Molloy M.G.M., Eustace J.A. Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin. J. Am. Soc. Nephrol. 2010, 5:275-280.
Verbalis J.G., Barsony J., Sugimura Y., Tian Y., Adams D.J., Carter E.A., Resnick H.E. Hyponatremia-induced osteoporosis. J. Bone Miner. Res. 2010, 25:554-563.
Ayus J.C., Negri A.L., Kalantar-Zadeh K., Moritz M.L. Is chronic hyponatremia a novel risk factor for hip fracture in the elderly?. Nephrol. Dial. Transpl. 2012, 27:3725-3731.
Barsony J., Sugimura Y., Verbalis J.G. Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J. Biol. Chem. 2010.
Teucher B., Dainty J.R., Spinks C.A., Majsak-Newman G., Berry D.J., Hoogewerff J.A., Foxall R.J., Jakobsen J., Cashman K.D., Flynn A., Fairweather-Tait S.J. Sodium and bone health: impact of moderately high and low salt intakes on calcium metabolism in postmenopausal women. J. Bone Miner. Res. 2008, 23:1477-1485.
Cabrera W.E., Schrooten I., Broe M.E.D., D'Haese P.C. Strontium and Bone. J. Bone Miner. Res. 1999, 14:661-668.
Cohen-Solal M. Strontium overload and toxicity: impact on renal osteodystrophy. Nephrol. Dial. Transpl. 2002, 17:30-34.
Baron R., Tsouderos Y. In vitro effects of S12911-2 on osteoclast function and bone marrow macrophage differentiation. Eur. J. Pharmacol. 2002, 450:11-17.
Buehler J., Chappuis P., Saffar J.L., Tsouderos Y., Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 2001, 29:176-179.
Cianferotti L., D'Asta F., Brandi M.L. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther. Adv. Musculoskeletal Dis. 2013.
Henrotin Y., Labasse A., Zheng S.X., Galais P., Tsouderos Y., Crielaard J.M., Reginster J.Y. Strontium ranelate increases cartilage matrix formation. J. Bone Miner. Res. 2001, 16:299-308.
Marie P.J. Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 2006, 38:10-14.
Reginster J.Y., Badurski J., Bellamy N., Bensen W., Chapurlat R., Chevalier X., Christiansen C., Genant H., Navarro F., Nasonov E., Sambrook P.N., Spector T.D., Cooper C. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann. Rheum. Dis. 2013, 72:179-186.
Reginster J.Y., Bruyère O., Sawicki A., Roces-Varela A., Fardellone P., Roberts A., Devogelaer J.P. Long-term treatment of postmenopausal osteoporosis with strontium ranelate: results at 8 years. Bone 2009, 45:1059-1064.
Reginster J.Y., Kaufman J.M., Goemaere S., Devogelaer J.P., Benhamou C.L., Felsenberg D., Diaz-Curiel M., Brandi M.L., Badurski J., Wark J., Balogh A., Bruyère O., Roux C. Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporosis Int. 2012, 23:1115-1122.
Takahashi N., Sasaki T., Tsouderos Y., Suda T. S 12911-2 inhibits osteoclastic bone resorption in vitro. J. Bone Miner. Res. 2003, 18:1082-1087.
Meunier P.J., Roux C., Ortolani S., Diaz-Curiel M., Compston J., Marquis P., Cormier C., Isaia G., Badurski J., Wark J.D., Collette J., Reginster J.Y. Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis. Osteoporosis Int. 2009, 20:1663-1673.
Reginster J.Y., Seeman E., Vernejoul M.C.D., Adami S., Compston J., Phenekos C., Devogelaer J.P., Curiel M.D., Sawicki A., Goemaere S., Sorensen O.H., Felsenberg D., Meunier P.J. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J. Clin. Endocrinol. Metab. 2005, 90:2816-2822.
Jonville-Bera A.-P., Autret-Leca E. Adverse drug reactions of ranélate de strontium (Protelos®) in France. La Presse Med. 2011, 40:e453-e462.
Schrooten I., Behets G.J.S., Cabrera W.E., Vercauteren S.R., Lamberts L.V., Verberckmoes S.C., Bervoets A.J., Dams G., Goodman W.G., De Broe M.E., D'Haese P.C. Dose-dependent effects of strontium on bone of chronic renal failure rats. Kidney Int. 2003, 63:927-935.
Schrooten I., Cabrera W., Goodman W.G., Dauwe S., Lamberts L.V., Marynissen R., Dorrine W., De Broe M.E., D'Haese P.C. Strontium causes osteomalacia in chronic renal failure rats. Kidney Int. 1998, 54:448-456.
Oste L., Bervoets A.R., Behets G.J., Dams G., Marijnissen R.L., Geryl H., Lamberts L.V., Verberckmoes S.C., Van Hoof V.O., De Broe M.E., D'Haese P.C. Time-evolution and reversibility of strontium-induced osteomalacia in chronic renal failure rats. Kidney Int. 2005, 67:920-930.
Wornham D.P., Hajjawi M.O., Orriss I.R., Arnett T.R. Strontium potently inhibits mineralisation in bone-forming primary rat osteoblast cultures and reduces numbers of osteoclasts in mouse marrow cultures. Osteoporosis Int. 2014, 25:2477-2484.
Brennan T.C., Rybchyn M.S., Green W., Atwa S., Conigrave A.D., Mason R.S. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br. J. Pharmacol. 2009, 157:1291-1300.
Brown E.M. Is the calcium receptor a molecular target for the actions of strontium on bone. Osteoporosis Int. 2003, 14:25-34.
Marie P.J. Strontium ranelate: new insights into its dual mode of action. Bone 2007, 40:S5-S8.
Pi M., Quarles L.D. A novel cation-sensing mechanism in osteoblasts is a molecular target for strontium. J. Bone Miner. Res. 2004, 19:862-869.
Bergmann P., Karmali R., De Wolf N. Does PTHrP plays a role in the stimulatory effect of strontium on osteoblast like cells UMR 106. 1: mineralization?. J. Bone Mineral Res. 2010, 25:197.
De Wolf N., Karmali R., Beyer I., Bergmann P. Effect of strontium on PTHrP, OPG and RANKL mRNA expression in osteoblastic like cells UMR 106.1. J. Bone Miner. Res. 2008, 23:247.
Kaabar W., Daar E., Gundogdu O., Jenneson P.M., Farquharson M.J., Webb M., Jeynes C., Bradley D.A. Metal deposition at the bone-cartilage interface in articular cartilage. Appl. Radiat. Isot. 2009, 67:475-479.
Kwon S.Y., Takei H., Pioletti D.P., Lin T., Ma Q.J., Akeson W.H., Wood D.J., Paul Sung K.L. Titanium particles inhibit osteoblast adhesion to fibronectin-coated substrates. J. Orthop. Res. 2000, 18:203-211.
Roebuck K.A., Vermes C., Carpenter L.R., Fritz E.A., Narayanan R., Glant T.T. Down-regulation of procollagen α1[I] messenger RNA by titanium particles correlates with nuclear factor (B (NF-(B) activation and increased Rel A and NF-(B1 binding to the collagen promoter. J. Bone Miner. Res. 2001, 16:501-510.
Vermes C., Chandrasekaran R., Jacobs J.J., Galante J.O., Roebuck K.A., Glant T.T. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J. Bone Joint Surg. 2001, 83:201.
Yao J., Glant T.T., Lark M.W., Mikecz K., Jacobs J.J., Hutchinson N.I., Hoerrner L.A., Kuettner K.E., Galante J.O. The potential role of fibroblasts in periprosthetic osteolysis: fibroblast response to titanium particles. J. Bone Miner. Res. 1995, 10:1417-1427.
Fritz E.A., Glant T.T., Vermes C., Jacobs J.J., Roebuck K.A. Titanium particles induce the immediate early stress responsive chemokines IL-8 and MCP-1 in osteoblasts. J. Orthop. Res. 2002, 20:490-498.
Bi Y., VanDeMotter R.R., Ragab A.A., Goldberg V.M., Anderson J.M., Greenfield E.M. Titanium particles stimulate bone resorption by inducing differentiation of murine osteoclasts. J. Bone Joint Surg. 2001, 83:501.
Nakano M., Tsuboi T., Kato M., Kurita K., Togari A. Inhibitory effect of titanium particles on osteoclast formation generated by treatment of mouse bone marrow cells with PGE2. Oral Dis. 2003, 9:77-83.
Matsunaga T., Kojo T., Tsujisawa T., Fukuizumi T., Wada S., Uchida Y., Inoue H. Preferential degradation of osteoclasts by titanium tetrachloride. J. Biomed. Mater. Res. 2001, 55:313-319.
Argonne National Laboratory. Uranium Quick Facts. (accessed: 04.10.2013). http://web.ead.anl.gov/uranium/guide/facts/index.cfm.
Díaz Sylvester P.L., López R., Ubios A.M., Cabrini R.L. Exposure to Subcutaneously implanted uranium dioxide impairs bone formation. Arch. Environ. Health 2002, 57:320.
Kurttio P., Komulainen H., Leino A., Salonen L., Auvinen A., Saha H. Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ. Health Persp. 2005, 113:68-72.
Tasat D.R., Orona N.S., Carola B., Cabrini R.L., Ubios A.M. Intracellular metabolism of uranium and the effects of bisphosphonates on its toxicity. Cell Metabolism - Cell Homeostasis and Stress Response 2012, 115-148. InTech, Rijeka, Croatia. P. Bubulya (Ed.).
Ubios A.M., Guglielmotti M.B., Steimetz T., Cabrini R.L. Uranium inhibits bone formation in physiologic alveolar bone modeling and remodeling. Environ. Res. 1991, 54:17-23.
Tasat D.R., Orona N.S., Mandalunis P.M., Cabrini R.L., Ubios A.M. Ultrastructural and metabolic changes in osteoblasts exposed to uranyl nitrate. Arch. Toxicol. 2007, 81:319-326.
Laizé V., Tiago D., Aureliano M., Cancela M. New insights into mineralogenic effects of vanadate. Cell. Mol. Life Sci. 2009, 66:3831-3836.
Cortizo A.M., Molinuevo M.S., Barrio D.A., Bruzzone L. Osteogenic activity of vanadyl(IV)-ascorbate complex: evaluation of its mechanism of action. Int. J. Biochem. Cell Biol. 2006, 38:1171-1180.
Facchini D.M., Yuen V.G., Battell M.L., McNeill J.H., Grynpas M.D. The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone 2006, 38:368-377.
Johnson R.B., Henderson J.S. Enhancement by sodium orthovanadate of the formation and mineralization of bone nodules by chick osteoblasts in vitro. Arch. Oral Biol. 1997, 42:271-276.
Barrio D.A., Etcheverry S.B. Vanadium and bone development: putative signaling pathways. Can. J. Physiol. Pharmacol. 2006, 84:677-686.
Krieger N.S., Tashjian A.H. Inhibition of stimulated bone resorption by vanadate. Endocrinology 1983, 113:324-328.
Ma Z.J., Yamaguchi M. Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J. Bone Miner. Metab. 2001, 19:38-44.
Cho Y.-E., Lomeda R.-A.R., Ryu S.-H., Sohn H.-Y., Shin H.-I., Beattie J.H., Kwun I.-S. Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr. Res. Pract. 2007, 1:113-119.
Kim J.-T., Baek S.-H., Lee S.-H., Park E.K., Kim E.-C., Kwun I.-S., Shin H.-I. Zinc-deficient diet decreases fetal long bone growth through decreased bone matrix formation in mice. J. Med. Food 2009, 12:118-123.
Ma Z.J., Yamaguchi M. Alternation in bone components with increasing age of newborn rats: role of zinc in bone growth. J. Bone Miner. Metab. 2000, 18:264-270.
Seo H.-J., Cho Y.-E., Kim T., Shin H.-I., Kwun I.-S. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr. Res. Pract. 2010, 4:356-361.
Gupta M., Mahajan V.K., Mehta K.S., Chauhan P.S. Zinc therapy in dermatology: a review. Dermatol. Res. Pract. 2014, 2014:11.
Hadley K.B., Newman S.M., Hunt J.R. Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation, matrix maturation, and mineralization in the long bones of growing rats. J. Nutr. Biochem. 2010, 21:297-303.
Nagata M., Lönnerdal B. Role of zinc in cellular zinc trafficking and mineralization in a murine osteoblast-like cell line. J. Nutr. Biochem. 2011, 22:172-178.
Ovesen J., M.Øller-Madsen B., Thomsen J.S., Danscher G., Mosekilde L. The positive effects of zinc on skeletal strength in growing rats. Bone 2001, 29:565-570.
Peretz A., Papadopoulos T., Willems D., Hotimsky A., Michiels N., Siderova V., Bergmann P., Neve J. Zinc supplementation increases bone alkaline phosphatase in healthy men. J. Trace Elem. Med. Biol. 2001, 15:175-178.
Yamaguchi M., Kishi S. Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol. Cell. Biochem. 1996, 158:171-177.
Brzóska M.M., Galazyn-Sidorczuk M., Rogalska J., Roszczenko A., Jurczuk M., Majewska K., Moniuszko-Jakoniuk J. Beneficial effect of zinc supplementation on biomechanical properties of femoral distal end and femoral diaphysis of male rats chronically exposed to cadmium. Chem. Biol. Interact. 2008, 171:312-324.
Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 2010, 338:241-254.
Moonga B.S., Dempster D.W. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J. Bone Miner. Res. 1995, 10:453-457.
Fong L., Tan K., Tran C., Cool J., Scherer M.A., Elovaris R., Coyle P., Foster B.K., Rofe A.M., Xian C.J. Interaction of dietary zinc and intracellular binding protein metallothionein in postnatal bone growth. Bone 2009, 44:1151-1162.
Yousef M.I., El Hendy H.A., El-Demerdash F.M., Elagamy E.I. Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology 2002, 175:223-234.
Beak J.Y., Kang H.S., Kim Y.-S., Jetten A.M. Krüppel-like zinc finger protein glis3 promotes osteoblast differentiation by regulating FGF18 expression. J. Bone Miner. Res. 2007, 22:1234-1244.
Kawai S., Yamauchi M., Wakisaka S., Ooshima T., Amano A. Zinc-finger transcription factor odd-skipped related 2 is one of the regulators in osteoblast proliferation and bone formation. J. Bone Miner. Res. 2007, 22:1362-1372.
Kwun I.-S., Cho Y.-E., Lomeda R.-A.R., Shin H.-I., Choi J.-Y., Kang Y.-H., Beattie J.H. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010, 46:732-741.
Yamaguchi M., Goto M., Uchiyama S., Nakagawa T. Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol. Cell. Biochem. 2008, 312:157-166.
Body J.J., Bergmann P., Boonen S., Boutsen Y., Bruyere O., Devogelaer J.P., Goemaere S., Hollevoet N., Kaufman J.M., Milisen K., Rozenberg S., Reginster J.Y. Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club. Osteoporosis Int. 2011, 22:2769-2788.