Alonso-Rodriguez A., Gerardo-Giorda L. New nonoverlapping domain decomposition methods for the harmonic Maxwell system. SIAM J. Sci. Comput. 2006, 28(1):102-122.
Abramowitz M., Stegun I. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Appl. Math. Ser. 1964, Dover Publications.
Ammari H. Scattering of waves by thin periodic layers at high frequencies using the on-surface radiation condition method. IMA J. Appl. Math. 1997, 60:199-215.
Antoine X. Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method. IMA J. Appl. Math. 2001, 66(1):83-110.
Antoine X. Advances in the on-surface radiation condition method: theory, numerics and applications. Computational Methods for Acoustics Problems 2008, 169-194. Saxe-Coburg Publications.
Bayliss A., Turkel E. Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math. 1980, 33(6):707-725.
Boubendir Y., Antoine X., Geuzaine C. A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 2012, 231(2):262-280.
Darbas M., Le Louër F. Well-conditioned boundary integral formulations for high-frequency elastic scattering problems in three dimensions. Math. Methods Appl. Sci. 2014, 10.1002/mma.3179.
Després B. Décomposition de domaine et problème de Helmholtz. C. R. Acad. Sci. Paris 1990, 1(6):313-316.
Després B., Joly P., Roberts J.E. A domain decomposition method for the harmonic Maxwell equations. Iterative Methods in Linear Algebra 1992, 475-484. North-Holland, Amsterdam.
Dolean V., Gander M., Lanteri S., Lee J.-F., Peng Z. Effective transmission conditions for domain decomposition methods applied to the time-harmonic curl-curl Maxwell's equations. J. Comput. Phys. 2015, 280(1):232-247.
Dolean V., Gander M.J., Gerardo-Giorda L. Optimized Schwarz methods for Maxwell's equations. SIAM J. Sci. Comput. 2009, 31(3):2193-2213.
Dular P., Geuzaine C., Henrotte F., Legros W. A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans. Magn. 1998, 34(5):3395-3398.
El Bouajaji M., Antoine X., Geuzaine C. Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations. J. Comput. Phys. 2014, 279:241-260.
El Bouajaji M., Dolean V., Gander M.J., Lanteri S. Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 2012, 34(4):A2048-A2071.
Ernst O.G., Gander M.J. Why it is difficult to solve Helmholtz problems with classical iterative methods. Numerical Analysis of Multiscale Problems 2012, 325-363. Springer.
Gander M.J., Magoulès F., Nataf F. Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 2002, 24(1):38-60. (electronic).
Geuzaine C. GetDP: a general finite-element solver for the de Rham complex. PAMM 2007, 7(1):1010603-1010604.
Geuzaine C., Remacle J.-F. Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79(11):1309-1331.
Jin J. The Finite Element Method in Electromagnetics 2002, John Wiley & Sons, Incorporated, New York. second ed.
Kriegsmann G.A., Taflove A., Umashankar K.R. A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach. IEEE Trans. Antennas Propag. 1987, 35(2):153-161.
Magoulès F., Iványi P., Topping B.H.V. Non-overlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 2004, 193(45-47):4797-4818.
Milinazzo F., Zala C., Brooke G. Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. February 1997, 101(2):760-766.
Monk P. Finite Element Methods for Maxwell's Equations. Numer. Math. Sci. Comput. 2003, Oxford University Press.
Murch R. The on-surface radiation condition applied to three-dimensional convex objects. IEEE Trans. Antennas Propag. 1993, 41(5):651-658.
Nédélec J.-C. Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. Appl. Math. Sci. 2001, vol. 144. Springer-Verlag, New York.
Peng Z., Lee J.-F. A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic Maxwell equations in R3. SIAM J. Sci. Comput. 2012, 34(3):A1266-A1295.
Peng Z., Rawat V., Lee J.-F. One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 2010, 229(4):1181-1197.
Rawat V., Lee J.-F. Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations. SIAM J. Sci. Comput. 2010, 32(6):3584-3603.
Roxburgh R. Electromagnetic scattering from a right-circular cylinder using a surface radiation condition. IMA J. Appl. Math. 1997, 59:221-230.
Vion A., Geuzaine C. Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem. J. Comput. Phys. 2014, 266:171-190.
Watson G. A Treatise on the Theory of Bessel Functions 1994, Cambridge University Press, Cambridge.