Chen, G., Nanoscale Energy Transport and Conversion-A Parallel Treatment of Electrons, Molecules, Phonons and Photons, Oxford University Press, Oxford, 2005.
Ghadimi, A., Saidur, R. and Metselaar, H., A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transfer, 54 (2011), 4051-4068.
Ozerinc, S., Kakac, S. and Yazicio, A. G., Enhanced thermal conductivity of nanofluids: A state-of-the-art review, Microfluid Nanofluid, 8 (2010), 145-170.
Volz, S. (ed.), Thermal Nanosystems and Nanomaterials, Springer, Berlin, 2010.
Ferry, D. K. and Goodnick, S. M., Transport in Nanostructures, 2nd edn, Cambridge University Press, Cambridge, 2009.
Zhang, Z. M., Nano/Microscale Heat Transfer, McGraw-Hill, New York, 2007.
Tzou, D. Y., Macro to Micro-scale Heat Transfer. The Lagging Behavior, Taylor and Francis, New York, 1997.
Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lwei, L., Rosengarten, G., Prasher, R. and Himanshu, T., Small particles, big impacts: A review of the diverse application of nanofluids, J. Appl. Phys., 113 (2013), 011301.
Michaelidis, E. E., Transport properties of nanofluids. A critical review, J. Non-Equilib. Thermodyn., 38 (2013), 1-79.
Alvarez, F. X., Cimmelli, V. A., Jou, D. and Sellito, A., Mesoscopic description of boundary effects in nanoscale heat transport, Nanosystems MMTA (2013), 1-31.
Müller, I., Zum Paradox der Warmetheorie, Z. Phys., 198 (1967), 329-344.
Lambermont, J. and Lebon, G., On a generalization of the Gibbs equation for heat conduction, Phys. Lett. A, 42 (1973), 499-500.
Jou, D., Casas-Vazquez, J. and Lebon, G., A dynamical interpretation of second-order constitutive equations of hydrodynamics, J. Non-Equilib. Thermodyn., 4 (1979), 349-362.
Lebon, G., Jou, D. and Casas-Vazquez, J. An extension of the local equilibrium hypothesis, J. Phys. A: Math. Gen., 13 (1980), 275-290.
Jou, D., Casas-Vazquez, J. and Lebon, G., Extended irreversible thermodynamics, Rep. Prog. Phys., 51 (1988), 1105-1179.
Lebon, G., Extended thermodynamics, in: CISME Courses and Lecture Notes, vol. 336, pp. 139-204, Springer, Vienna, 1992.
Lebon, G., Casas-Vazquez, J. and Jou, D., Questions and answers about a thermodynamic theory of the third type, Con-temp. Physics, 33 (1992), 41-51.
Müller, I. and Ruggeri, T., Rational Extended Thermodynamics, 2nd edn, Springer, New York, 1998.
Jou, D., Casas-Vazquez, J. and Lebon, G., Extended irreversible thermodynamics revisited (1988-1998), Rep. Prog. Phys., 62 (1999), 1035-1142.
Lebon, G., Jou, D. and Casas-Vazquez, J., Understanding Non-Equilibrium Thermodynamics, Springer, Berlin, 2008.
Jou, D., Casas-Vazquez, J. and Lebon, G., Extended Irreversible Thermodynamics, 4th edn, Springer, Berlin, 2010.
Cimmelli, V. A., Different thermodynamic theories and different heat conduction laws, J. Non-Equilib. Thermodyn., 34 (2009), 299-333.
Guo, Z.-Y. and Hou, Q.-W., Thermal waves based on the thermomass model, J. Heat Transfer, 132 (2010), 072403.
Fourier, J. B. J., Théorie Analytique de la Chaleur, Ed. F. Didot, Paris, 1822.
Cattaneo, C, Sulla conduzione del calore, Atti Seminario Mat. Fis. Univ. Modena, 3 (1948), 83-101.
Cattaneo, C, A form of heat conduction which eliminates the paradox of instantaneous propagation, Comptes Rendus Acad. Sci. Paris, 247 (1958), 431-433.
Guyer, R. A. and Krumhansl, J. A., Solution of the linearized Boltzmann phonon equation, Phys. Rev., 148 (1966), 766-778.
Guyer, R. A. and Krumhansl, J. A., Thermal conductivity, second sound and phonon hydrodynamic phenomena in non-metallic crystals, Phys. Rev., 148 (1966), 779-788.
Straughan, B., HeatWaves, Springer, Berlin, 2011.
Nicolis, G. and Prigogine, I., Exploring Complexity, Freeman, New York, 1989.
Onsager, L., Reciprocal relations in irreversible processes, Phys. Rev., 37 (1931), 405-426 and 38 (1931), 2265-2279.
Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, Interscience, New York, 1961.
De Groot, S. R, and Mazur, P., Non-Equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.
Grmela, M., Lebon, G. and Dubois, C, Multiscale thermodynamics and mechanics of heat, Phys. Rev. E, 83 (2011), 061134.
Casas-Vazquez, J. and Jou, D., Temperature in non-equilibrium states: A review of open problems and current proposals, Rep. Prog. Phys., 66 (2003), 1937-2023.
Palumbo, A., Valenti, A. and Lebon, G., A mesoscopic thermodynamical description of rheological models, J. Non-Equilib. Thermodyn., 35 (2010), 181-198.
Hess, S., On nonlocal constitutive relations, continued fraction expansion for the wave vector dependent diffusion coefficient, Z. Naturforsch. A, 32 (1977), 678-684.
Alvarez, F. X. and Jou, D., Memory and the non-local effects in heat transport from diffusive and ballistic regimes, Appl. Phys. Lett., 90 (2007), 083109.
Choi, S. U. S. and Eastman, J. A., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Argonne Press, Lemont, 1995.
Tesfai, W., Singh, P. K., Masharga, S., Souier, T., Chiesa, M. and Shatilla, Y, Investigating the effects of suspensions nano-structure on thethermophysical properties of nanofluids, J. Appl. Phys., 112 (2012), 114315.
Keblinski, P., Prasher, R. and Eapen, J., Thermal conductance of nanofluids: Is the controversy over?, J. Nanopart. Res., 10 (2008), 1089-1097.
Murshed, S., Leong, K. and Yang, C, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47 (2008), 560-568.
Yoo, D., Hong, K. and Yang, H., Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Ther-mochim. Acta, 455 (2007), 66-69.
Maxwell, J. C, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1881.
Bruggeman, D., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, Anal. Phys., 24 (1935), 636-664.
Nan, C, Shi, Z. and Lin, Y, A simple model for thermal conductivity of carbon nanotube-based composites, Chem. Phys. Lett., 375 (2003), 666-669.
Khanafer, K. and Vafai, K., A critical synthesis of thermophysical characteristics of nanofluids, Int. J. Heat Mass Transfer, 54 (2011), 4410-4428.
Eapen, J., Rusconi, R., Piazza, R. and Yip, S., The classical nature of thermal conduction in nanofluids, J. Heat Transfer, 132 (2010), 102402.
Yu, W. and Choi, S. U. S., The role of interfacial layers in the enhanced thermal conductivity of nanofluids, J. Nanoparticle Res., 6 (2004), 355-361.
Warrier, P., Yuan, Y, Bexk, M. P. and Teja, A. S., Heat transfer in nanoparticle suspensions: Modeling the thermal conductivity of nanofluids, AIChE, 56 (2010), 3243.
Teja, A. S., Beck, M. P., Yuan, Y. and Warrier, P., The limiting behavior of the thermal conductivity of nanoparticles and nanofluids, J. Appl. Phys., 107 (2010), 114319.
Esmaeilzadech, F., Warrier, P. and Teja, A. S., The thermal conductivity of bentonite nanoparticles dispersed in water, ethylene glycol and triethylene glycol, J. Nanofluids, 2 (2013), 184-187.
Yu, W., France, D. M., Timofeeva, E. V. and Singh, D., Effective thermal conductivity models for carbon nanotube based nanofluids, J. Nanofluids, 2 (2013), 69-73.
Behrang, A., Grmela, M., Dubois, C, Turenne, S. and Lafleur, P. G., Effective heat conduction in nanodispersions, J. Appl. Phys., 107 (2013), 114312.
Alvarez, F. X., Jou, D. and Sellitto, A., Pore-size dependence of the thermal conductivity of porous silicon: A phonon hydro-dynamic approach, Appl. Phys. Lett., 97, (2010), 033103.
Millikan, R. A., The general law of fall of a small spherical body through gas, and its bearing upon the nature of molecular reflection from surfaces, Phys. Rev., 22 (1923), 1-23.
Li, N., Ren, J., Wang, L., Zhang, G., Hanggi, P. and Li, B., Phononics: Manipulating heat flow with electronics analogs and beyond, Rev. Mod. Phys., 84 (2012), 1045-1066.
Criado-Sancho, M., Alvarez, F. X. and Jou, D., Thermal rectification in inhomogeneous Si devices, J. Appl. Phys., 114 (2013) 053512.
Criado-Sancho, M. and Jou, D., Heat transport in bulk/nanoporous/bulk silicon devices, Phys. Lett. A, 177 (2013), 486-490.
Alvarez, F. X. and Jou, D., Boundary conditions and evolution of ballistic heat transport, ASME J. Heat Transfer, 132 (2010), 124404.
Chen, G., Ballistic-diffusion equations for transient heat conduction from nano to macro scales, ASME J. Heat Transfer, 124 (2002), 320-329.
Joshi, A. A., and Majumdar, A., Transient ballistic and diffusive phonon heat transport in thin films, J. Appl. Phys., 74 (1993), 31-39.
Lebon, G., Machrafi, H., Grmela, M., and Dubois, C, An extended thermodynamic model of transient heat conduction at sub-continuum scales, Proc. R. Soc. A, 467 (2011), 3245-3256.
Cahill, D. C, Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., Merlin, R. and Phillpot, S. R., Nanoscale thermal transport, J. Appl. Phys., 93 (2003), 793-818.
Bruus, H., Theoretical Microfluidics, Oxford University Press, Oxford, 2007.
Alvarez, F. X., Jou, D. and Sellitto, A., Phonon hydrodynamics and phonon-boundary scattering in nanosystems, J. Appl. Phys., 105 (2009), 014317.
Sellito, A., Alvarez, F. X. and Jou, D., Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires, J. Appl. Phys., 107 (2010), 114312.
Sellito, A., Alvarez, F. X. and Jou, D., Second law of thermodynamics and phonon boundary conditions in nanowires, J. Appl. Phys., 107 (2010), 064302.
Mitsuya, Y, Modified Reynolds equation for ultra-thin films gas lubrification using 1.5-order slip model and considering surface accommodation coefficient, J. Tribol., 115 (1993), 289-295.
Xu, M., Slip boundary condition of heat flux in Knudsen layers, Proc. R. Soc. A, 470 (2013), 0578.
Sellito, A., Jou, D., and Bafaluy, J., Non-local effects in radial heat transport in silicon thin layers and grapheme sheets, Proc. R. Soc. A, 467 (2011), 0587.
Alvarez, F. X., Jou, D. and Sellito, A., Phonon boundary effects and thermal conductivity of rough concentric nanowires, ASME J. Heat Transfer, 133 (2010), 022402.
Jou, D., Lebon, G. and Criado-Sancho, M., Variational principles for thermal transport in nanosystems with heat slip flow, Phys. Rev. E, 82 (2010), 031128.
Lebon, G. and Dauby, P. C, Heat transport in dielectric crystals at low temperature: A variational formulation based on extended irreversible thermodynamics, Phys. Rev. A, 42 (1990), 4710-4715.
Lebon, G., Jou, D. and Dauby, P., Beyond the Fourier heat conduction law and the thermal no-slip boundary condition, Phys. Lett., A 376 (2012), 2842-2846.
Mavrantzas, V. G. and Beris, A. N., A hierarchical model for surface effects on chain conformation and rheology of polymer solutions, I. General formulation, J. Chem. Phys., 110 (1999), 616-627.
Öttinger, H. C, Thermodynamic formulation of wall slip, J. Non-Newtonian Fluid Mech., 152 (2008), 66-75.
Edwards, D. B., Brenner, H. and Wasan, D. T., Interfacial Transport Processes and Rheology, Butterworth-Heinemann, Boston, 1999.
Kjelstrup, S. and Bedeaux, D., Non-Equilibrium Thermodynamics of Heterogeneous Systems, World Scientific, Singapore, 2008.
Sanfeld, A. and Steinchen, A., Surface excess momentum balance by integration across the surface of the volume balances, in: Lecture Notes in Physics, vol. 467, pp. 28-36, Springer, Berlin, 1996.
Grmela, M. and Öttinger, H. C, Dynamics and thermodynamics of complex fluids. I. Development of a genera l formalism, Phys. Rev. E, 56 (1997), 6620-6632.
Öttinger, H. C. and Grmela, M., Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism, Phys. Rev. E, 56 (1997), 6633-6655.
Öttinger, H. C, Beyond Equilibrium Thermodynamics, Wiley, Hoboken, 2005.
Coleman, B. D., Thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 17 (1964), 1-46.
Dong, Y., Cao, B.-Y. and Guo, Z.-Y, Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics, J. Appl. Phys., 110 (2011), 063504.
Dong, Y, Cao, B.-Y. and Guo, Z.-Y, General expression for entropy production in transport processes based on thermomass model, Phys. Rev. E, 85 (2012), 061107.