Abramowitz M., Stegun I. Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables. Applied Mathematics Series 1964, Dover Publications.
Alouges F., Borel S., Levadoux D.P. A stable well-conditioned integral equation for electromagnetism scattering. J. Comput. Appl. Math. 2007, 204(2):440-451.
Ammari H. Scattering of waves by thin periodic layers at high frequencies using the on-surface radiation condition method. IMA J. Appl. Math. 1997, 60:199-215.
Andronov I., Bouche D., Molinet F. Asymptotic and Hybrid Methods in Electromagnetics. IEE Electromagnetic Waves Series 2005, vol. 48. Institution of Electrical Engineers (IEE), London.
Antoine X. Fast approximate computation of a time-harmonic scattered field using the on-surface radiation condition method. IMA J. Appl. Math. 2001, 66(1):83-110.
Antoine X. Advances in the on-surface radiation condition method: theory, numerics and applications. Computational Methods for Acoustics Problems 2008, 169-194. Saxe-Coburg Publications.
Antoine X., Barucq H., Bendali A. Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape. J. Math. Anal. Appl. 1999, 229(1):184-211.
Antoine X., Barucq H., Vernhet L. High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions. Asymptot. Anal. 2001, 26(3-4):257-283.
Antoine X., Bendali A., Darbas M. Analytic preconditioners for the electric field integral equation. Int. J. Numer. Methods Eng. 2004, 61(8):1310-1331.
Antoine X., Bendali A., Darbas M. Analytic preconditioners for the boundary integral solution of the scattering of acoustic waves by open surfaces. J. Comput. Acoust. 2005, 13(3):477-498.
Antoine X., Darbas M. Alternative integral equations for the iterative solution of acoustic scattering problems. Q. J. Mech. Appl. Math. 2005, 1(58):107-128.
Antoine X., Darbas M. Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation. Math. Model. Numer. Anal. 2007, 1(41):147-167.
Antoine X., Darbas M. Integral Equations and Iterative Schemes for Acoustic Scattering Problems 2014, Saxe-Coburg Editors, in press.
Antoine X., Darbas M., Lu Y.Y. An improved surface radiation condition for high-frequency acoustic scattering problems. Comput. Methods Appl. Mech. Eng. 2006, 195(33-36):4060-4074.
Barucq H., Djellouli R., Saint-Guirons A. High-frequency analysis of the efficiency of a local approximate DtN2 boundary condition for prolate spheroidal-shaped boundaries. Wave Motion 2010, 47(8):583-600.
Barucq H., Djellouli R., Saint-Guirons A. Three-dimensional approximate local DtN boundary conditions for prolate spheroid boundaries. J. Comput. Appl. Math. 2010, 234(6):1810-1816.
Bayliss A., Turkel E. Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math. 1980, 33(6):707-725.
Bérenger J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114(2):185-200.
Borel S., Levadoux D.P., Alouges F. A new well-conditioned integral formulation for Maxwell equations in three dimensions. IEEE Trans. Antennas Propag. 2005, 53(9):2995-3004.
Boubendir Y., Antoine X., Geuzaine C. A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 2012, 2(231):262-280.
Boubendir Y., Turc C. Well-conditioned boundary integral equation formulations for the solution of high-frequency electromagnetic scattering problems. Comput. Math. Appl. 2014, 67:1772-1805.
Bruno O., Elling T., Paffenroth R., Turc C. Electromagnetic integral equations requiring small numbers of Krylov-subspace iterations. J. Comput. Phys. 2009, 228(17):6169-6183.
Bruno O., Elling T., Turc C. Regularized integral equations and fast high-order solvers for sound-hard acoustic scattering problems. Int. J. Numer. Methods Eng. 2012, 91(10):1045-1072.
Chandler-Wilde S.N., Graham I.G., Langdon S., Spence E.A. Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 2012, 21:89-305.
Chew W., Jin J.-M., Michielssen E., Song J. Fast and Efficient Algorithms in Computational Electromagnetics 2001, Artech House Antennas and Propagation Library, Norwood.
Chew W., Weedon W. A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates. Microw. Opt. Technol. Lett. Sep 1994, 7(13):599-604.
Colton D., Kress R. Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics 1993, Wiley.
Darbas M. Generalized combined field integral equations for the iterative solution of the three-dimensional Maxwell equations. Appl. Math. Lett. 2006, 19(8):834-839.
Darbas M., Darrigrand E., Lafranche Y. Combining analytic preconditioner and fast multipole method for the 3-D Helmholtz equation. J. Comput. Phys. 2013, 236:289-316.
Darve E. The fast multipole method: numerical implementation. J. Comput. Phys. 2000, 160(1):195-240.
Dolean V., Gander M.J., Gerardo-Giorda L. Optimized Schwarz methods for Maxwell's equations. SIAM J. Sci. Comput. 2009, 31(3):2193-2213.
El Bouajaji M., Dolean V., Gander M.J., Lanteri S. Optimized Schwarz methods for the time-harmonic Maxwell equations with damping. SIAM J. Sci. Comput. 2012, 34(4):A2048-A2071.
M. El Bouajaji, B. Thierry, X. Antoine, C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Maxwell's equation, 2014, in preparation.
Engquist B., Majda A. Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 1979, 32(3):314-358.
Gander M.J., Magoulès F., Nataf F. Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 2002, 24(1):38-60. (electronic).
Givoli D. High-order local non-reflecting boundary conditions: a review. Wave Motion Apr 2004, 39(4):319-326.
Hagstrom T. New results on absorbing layers and radiation boundary conditions. Lecture Notes in Computational Science and Engineering 2003, vol. 31:1-42. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (Eds.).
Jin J. The Finite Element Method in Electromagnetics 2002, John Wiley & Sons, Incorporated, New York. second edition.
Kechroud R., Antoine X., Soulaïmani A. Numerical accuracy of a Padé-type non-reflecting boundary condition for the finite element solution of acoustic scattering problems at high-frequency. Int. J. Numer. Methods Eng. 2005, 64(10):1275-1302.
Kriegsmann G.A., Taflove A., Umashankar K.R. A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach. IEEE Trans. Antennas Propag. 1987, 35(2):153-161.
Levadoux D., Millot F., Pernet S. An unpreconditioned boundary-integral for iterative solution of scattering problems with non-constant Leontovitch impedance boundary conditions. Commun. Comput. Phys. 2014, 15:1431-1460.
Levadoux D.P., Michielsen B.L. Nouvelles formulations intégrales pour les problèmes de diffraction d'ondes. M2AN Math. Model. Numer. Anal. 2004, 38(1):157-175.
Liu Y. Fast Multipole Boundary Element Method. Theory and Applications in Engineering 2009, Cambridge University Press.
Magoulès F., Iványi P., Topping B.H.V. Non-overlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 2004, 193(45-47):4797-4818.
Majda A., Osher S. Reflection of singularities at the boundary. Commun. Pure Appl. Math. 1975, 28(4):479-499.
Medvinsky M., Turkel E. On surface radiation conditions for an ellipse. J. Comput. Appl. Math. 2010, 234(6):1647-1655.
Milinazzo F., Zala C., Brooke G. Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. Feb 1997, 101(2):760-766.
Monk P. Finite Element Methods for Maxwell's Equations. Numerical Mathematics and Scientific Computation 2003, Oxford University.
Murch R. The on-surface radiation condition applied to three-dimensional convex objects. IEEE Trans. Antennas Propag. 1993, 41(5):651-658.
Nédélec J.-C. Acoustic and Electromagnetic Equations. Applied Mathematical Sciences 2001, vol. 144. Springer-Verlag, New York, Integral representations for harmonic problems.
Peng Z., Lee J.-F. A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic Maxwell equations in R3. SIAM J. Sci. Comput. 2012, 34(3):A1266-A1295.
Peng Z., Rawat V., Lee J.-F. One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems. J. Comput. Phys. 2010, 229(4):1181-1197.
Pernet S. A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition. M2AN Math. Model. Numer. Anal. 2010, 44(4):781-801.
Reiner R.C., Djellouli R., Harari I. The performance of local absorbing boundary conditions for acoustic scattering from elliptical shapes. Comput. Methods Appl. Mech. Eng. 2006, 195(29-32):3622-3665.
Roxburgh R. Electromagnetic scattering from a right-circular cylinder using a surface radiation condition. IMA J. Appl. Math. 1997, 59:221-230.
Saad Y. Iterative Methods for Sparse Linear Systems 2003, Society for Industrial and Applied Mathematics, Philadelphia, PA. second edition.
Tsynkov S. Numerical solution of problems on unbounded domains: a review. Appl. Numer. Math. Aug 1998, 27(4):465-532.
Turkel E. Boundary conditions and iterative schemes for the Helmholtz equation in unbounded region. Computational Methods for Acoustics Problems 2008, 127-158. Saxe-Coburg Publications.