Characterization of Cichopeptins, New Phytotoxic Cyclic Lipodepsipeptides Produced by Pseudomonas cichorii SF1-54, and Their Role in Bacterial Midrib Rot Disease of Lettuce
Huang, CJ; Pauwelyn, E.; Ongena, Marcet al.
2015 • In Molecular Plant-Microbe Interactions, 28 (9), p. 109-1022
Ongena, Marc ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Bio-industries
Debois, D
Leclère, V.
Jacques, Philippe ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Bio-industries
Bleyaert, P.
Hofte, M.
Language :
English
Title :
Characterization of Cichopeptins, New Phytotoxic Cyclic Lipodepsipeptides Produced by Pseudomonas cichorii SF1-54, and Their Role in Bacterial Midrib Rot Disease of Lettuce
Publication date :
2015
Journal title :
Molecular Plant-Microbe Interactions
ISSN :
0894-0282
eISSN :
1943-7706
Publisher :
American Phytopathological Society, St Paul, United States - Minnesota
Ansari, M. Z., Yadav, G., Gokhale, R. S., and Mohanty, D. 2004. NRPSPKS: A knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32:W405-W413.
Asaka, O., and Shoda, M. 1996. Biocontrol of Rhizoctonia solani dampingoff of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62: 4081-4085.
Bachmann, B. O., and Ravel, J. 2009. Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 458:181-217.
Balibar, C. J., Vaillancourt, F. H., andWalsh, C. T. 2005. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. Chem. Biol. 12:1189-1200.
Ballio, A., Bossa, F., Camoni, L., Di Giorgio, D., Flamand, M. C., Maraite, H., Nitti, G., Pucci, P., and Scaloni, A. 1996. Structure of fuscopeptins, phytotoxic metabolites of Pseudomonas fuscovaginae. FEBS (Fed. Eur. Biochem. Soc.) Lett. 381:213-216.
Bender, C. L., Alarcón-Chaidez, F., and Gross, D. C. 1999. Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63: 266-292.
Bradbury, J. F. 1986. Guide to plant pathogenic bacteria. Oxford University Press, USA.
Brodey, C. L., Rainey, P. B., Tester, M., and Johnstone, K. 1991. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol. Plant Microbe Interact. 4:407-411.
Buell, C. R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I. T., Gwinn, M. L., Dodson, R. J., Deboy, R. T., Durkin, A. S., Kolonay, J. F., Madupu, R., Daugherty, S., Brinkac, L., Beanan, M. J., Haft, D. H., Nelson, W. C., Davidsen, T., Zafar, N., Zhou, L., Liu, J., Yuan, Q., Khouri, H., Fedorova, N., Tran, B., Russell, D., Berry, K., Utterback, T., Van Aken, S. E., Feldblyum, T. V., D'Ascenzo, M., Deng, W. L., Ramos, A. R., Alfano, J. R., Cartinhour, S., Chatterjee, A. K., Delaney, T. P., Lazarowitz, S. G., Martin, G. B., Schneider, D. J., Tang, X., Bender, C. L., White, O., Fraser, C. M., and Collmer, A. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. U.S.A. 100:10181-10186.
Caradec, T., Pupin, M., Vanvlassenbroeck, A., Devignes, M. D., Smaïl- Tabbone, M., Jacques, P., and Lecl'ere, V. 2014. Prediction of monomer isomery in Florine: A workflow dedicated to nonribosomal peptide discovery. PLoS ONE 9:e85667.
Challis, G. L., Ravel, J., and Townsend, C. A. 2000. Predictive, structurebased model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7:211-224.
Chen, C., and Beattie, G. A. 2007. Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-b-synthase domains are required for its osmoregulatory function. J. Bacteriol. 189:6901-6912.
Chen, C., and Beattie, G. A. 2008. Pseudomonas syringae BetT is a lowaffinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine. J. Bacteriol. 190:2717-2725.
Chen, C., Li, S., McKeever, D. R., and Beattie, G. A. 2013. The widespread plant-colonizing bacterial species Pseudomonas syringae detects and exploits an extracellular pool of choline in hosts. Plant J. 75:891-902.
Coraiola, M., Paletti, R., Fiore, A., Fogliano, V., and Dalla Serra, M. 2008. Fuscopeptins, antimicrobial lipodepsipeptides from Pseudomonas fuscovaginae, are channel forming peptides active on biological and model membranes. J. Pept. Sci. 14:496-502.
Cottyn, B., Baeyen, S., Pauwelyn, E., Verbaednert, I., De Vos, P., Bleyaert, P., Hofte, M., and Maes, M. 2011. Development of a real-time PCR assay for Pseudomonas cichorii, the causal agent of midrib rot in greenhousegrown lettuce, and its detection in irrigating water. Plant Pathol. 60: 453-461.
Cottyn, B., Heylen, K., Heyrman, J., Vanhouteghem, K., Pauwelyn, E., Bleyaert, P., Van Vaerenbergh, J., Höfte, M., De Vos, P., and Maes, M. 2009. Pseudomonas cichorii as the causal agent of midrib rot, an emerging disease of greenhouse-grown butterhead lettuce in Flanders. Syst. Appl. Microbiol. 32:211-225.
Darling, A. E., Mau, B., and Perna, N. T. 2010. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5: e11147.
de Bruijn, I., de Kock, M. J. D., Yang, M., deWaard, P., van Beek, T. A., and Raaijmakers, J. M. 2007. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol. Microbiol. 63:417-428.
de Bruijn, I., and Raaijmakers, J. M. 2009. Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease. J. Bacteriol. 191:1910-1923.
de Zwart, F. J., Slow, S., Payne, R. J., Lever, M., George, P. M., Gerrard, J. A., and Chambers, S. T. 2003. Glycine betaine and glycine betaine analogues in common foods. Food Chem. 83:197-204.
Delcher, A. L., Harmon, D., Kasif, S., White, O., and Salzberg, S. L. 1999. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27:4636-4641.
Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., and Gascuel, O. 2008. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36:W465-W469.
Diab, F., Bernard, T., Bazire, A., Haras, D., Blanco, C., and Jebbar, M. 2006. Succinate-mediated catabolite repression control on the production of glycine betaine catabolic enzymes in Pseudomonas aeruginosa PAO1 under low and elevated salinities. Microbiology 152:1395-1406.
Emanuele, M. C., Scaloni, A., Lavermicocca, P., Jacobellis, N. S., Camoni, L., Di Giorgio, D., Pucci, P., Paci, M., Segre, A., and Ballio, A. 1998. Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata. FEBS (Fed. Eur. Biochem. Soc.) Lett. 433:317-320.
Eshoo, M.W. 1988. lac fusion analysis of the bet genes of Escherichia coli: Regulation by osmolarity, temperature, oxygen, choline, and glycine betaine. J. Bacteriol. 170:5208-5215.
Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., Lykidis, A., Trong, S., Nolan, M., Goltsman, E., Thiel, J., Malfatti, S., Loper, J. E., Lapidus, A., Detter, J. C., Land, M., Richardson, P. M., Kyrpides, N. C., Ivanova, N., and Lindow, S. E. 2005. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. U.S.A. 102:11064-11069.
Flamand, M. C., Pelsser, S., Ewbank, E., and Maraite, H. 1996. Production of syringotoxin and other bioactive peptides by Pseudomonas fuscovaginae. Physiol. Mol. Plant Pathol. 48:217-231.
Grgurina, I., Bensaci, M., Pocsfalvi, G., Mannina, L., Cruciani, O., Fiore, A., Fogliano, V., Sorensen, K. N., and Takemoto, J. Y. 2005. Novel cyclic lipodepsipeptide from Pseudomonas syringae pv. lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob. Agents Chemother. 49:5037-5045.
Gross, D. C., and DeVay, J. E. 1977. Role of syringomcin in holcus spot of maize and systemic necrosis of cowpea caused by Pseudomonas syringae. Physiol. Mol. Plant Pathol. 11:1-11.
Gross, H., and Loper, J. E. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26:1408-1446.
Gross, H., Stockwell, V. O., Henkels, M. D., Nowak-Thompson, B., Loper, J. E., and Gerwick, W. H. 2007. The genomisotopic approach: A systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14:53-63.
Halliwell, B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141:312-322.
Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J., and Schweizer, H. P. 1998. A broad-host-range Flp-FRT recombination system for sitespecific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77-86.
Hojo, H., Koyanagi, M., Tanaka, M., Kajihara, S., Ohnishi, K., Kiba, A., and Hikichi, Y. 2008. The hrp genes of Pseudomonas cichorii are essential for pathogenicity on eggplant but not on lettuce. Microbiology 154:2920-2928.
Hu, F. P., Young, J. M., and Fletcher, M. J. 1998. Preliminary description of biocidal (syringomycin) activity in fluorescent plant pathogenic Pseudomonas species. J. Appl. Microbiol. 85:365-371.
Hutchison, M. L., Tester, M. A., and Gross, D. C. 1995. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: A model for the mechanism of action in the plant-pathogen interaction. Mol. Plant Microbe Interact. 8:610-620.
Iacobellis, N. S., Lavermicocca, P., Surico, G., and Durbin, R. D. 1992. The occurrence of a syringomycin-macromolecular complex in cultures of Pseudomonas syringae pv. syringae. Physiol. Mol. Plant Pathol. 40: 91-105.
Jagger, I. C. 1914. Bacterial leaf spot disease of celery. Phytopathology 4: 395.
Jones, J. B., Raju, B. C., and Engelhard, A.W. 1984. Effects of temperature and leaf wetness on development of bacterial spot of geranium and chrysanthemum incited by Pseudomonas cichorii. Plant Dis. 68: 248-251.
Kajihara, S., Hojo, H., Koyanagi, M., Tanaka, M., Mizumoto, H., Ohnishi, K., Kiba, A., and Hikichi, Y. 2012. Implication of hrpW in virulence of Pseudomonas cichorii. Plant Pathol. 61:355-363.
Kang, H., and Gross, D. C. 2005. Characterization of a resistancenodulation- cell division transporter system associated with the syr-syp genomic island of Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 71:5056-5065.
Kiba, A., Lee, K. Y., Ohnishi, K., Park, P., Nakayashiki, H., Tosa, Y., Mayama, S., and Hikichi, Y. 2009. Induction of reactive oxygen generation and functional changes in mitochondria and their involvement in the development of bacterial rot in lettuce caused by Pseudomonas cichorii. Physiol. Mol. Plant Pathol. 74:45-54.
Kiba, A., Sangawa, Y., Ohnishi, K., Yao, N., Park, P., Nakayashiki, H., Tosa, Y., Mayama, S., and Hikichi, Y. 2006. Induction of apoptotic cell death leads to the development of bacterial rot caused by Pseudomonas cichorii. Mol. Plant Microbe Interact. 19:112-122.
Koch, B., Nielsen, T. H., Sørensen, D., Andersen, J. B., Christophersen, C., Molin, S., Givskov, M., Sørensen, J., and Nybroe, O. 2002. Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudate via the Gac two-component regulatory system. Appl. Environ. Microbiol. 68:4509-4516.
Landfald, B., and Strøm, A. R. 1986. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol. 165:849-855.
Lavermicocca, P., Iacobellis, N. S., Simmaco, M., and Graniti, A. 1997. Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiol. Mol. Plant Pathol. 50:129-140.
Lazzaroni, S., Evidente, A., and Surico, G. 2003. Toxic metabolites and lipopolysaccharides from Pseudomonas cichorii. Pages 233-243 in: Pseudomonas syringae and related pathogens.N. S. Iacobellis, A. Collmer, S.W. Hutchison, J.W. Mansfield, C. E. Morris, J. Murillo, N.W. Schaad, D. E. Stead, G. Surico, and M. S. Ullrich, eds. Kluwer academic publishers, Dordrecht, The Netherlands.
Li, S., Yu, X., and Beattie, G. A. 2013. Glycine betaine catabolism contributes to Pseudomonas syringae tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis. J. Bacteriol. 195:2415-2423.
Licciardello, G., Bertani, I., Steindler, L., Bella, P., Venturi, V., and Catara, V. 2009. The transcriptional activator rfiA is quorum-sensing regulated by cotranscription with the luxI homolog pcoI and is essential for plant virulence in Pseudomonas corrugata. Mol. Plant Microbe Interact. 22:1514-1522.
Licciardello, G., Strano, C. P., Bertani, I., Bella, P., Fiore, A., Fogliano, V., Venturi, V., and Catara, V. 2012. N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. J. Biotechnol. 159:274-282.
Meyer, J. M., and Abdallah, M. A. 1978. The fluorescent pigment of Pseudomonas fluorescens: Biosynthesis, purification and physicochemical properties. J. Gen. Microbiol. 107:319-328.
Mo, Y. Y., and Gross, D. C. 1991. Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. J. Bacteriol. 173:5784-5792.
Monti, S. M., Gallo, M., Ferracane, R., Borrelli, R. C., Ritieni, A., Greco, M. L., Graniti, A., and Fogliano, V. 2001. Analysis of bacterial lipodepsipeptides by matrix-assisted laser desorption/ionisation time-offlight and high-performance liquid chromatography with electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 15:623-628.
Nielsen, T. H., and Sørensen, J. 2003. Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl. Environ. Microbiol. 69:861-868.
Nielsen, T. H., Thrane, C., Christophersen, C., Anthoni, U., and Sørensen, J. 2000. Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. Appl. Microbiol. 89:992-1001.
Pauwelyn, E. 2012. Epidemiology and pathogenicity mechanisms of Pseudomonas cichorii, the causal agent of midrib rot in greenhousegrown butterhead lettuce (Lactuca sativa L.). Dissertation. Ghent University, Ghent, Belgium.
Pauwelyn, E., Huang, C. J., Ongena, M., Lecl'ere, V., Jacques, P., Bleyaert, P., Budzikiewicz, H., Schäfer, M., and Höfte, M. 2013. New linear lipopeptides produced by Pseudomonas cichorii SF1-54 are involved in virulence, swarming motility, and biofilm formation. Mol. Plant Microbe Interact. 26:585-598.
Pauwelyn, E., Vanhouteghem, K., Cottyn, B., De Vos, P., Maes, M., Bleyaert, P., and Hofte, M. 2011. Epidemiology of Pseudomonas cichorii, the case of lettuce midrib rot. J. Phytopathol. 159:298-305.
Raaijmakers, J. M., de Bruijn, I., and de Kock, M. J. D. 2006. Cyclic lipopeptide production by plant-associated Pseudomonas spp.: Diversity, activity, biosynthesis, and regulation. Mol. Plant Microbe Interact. 19:699-710.
Raaijmakers, J. M., De Bruijn, I., Nybroe, O., and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. 34:1037-1062.
Rausch, C., Hoof, I., Weber, T., Wohlleben, W., and Huson, D. H. 2007. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol. Biol. 7:78.
Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W., and Huson, D. H. 2005. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33:5799-5808.
Röttig, M., Medema, M. H., Blin, K., Weber, T., Rausch, C., and Kohlbacher, O. 2011. NRPSpredictor2-A web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39:W362-W367.
Sambrook, J., and Russel, D. W. 2001. Molecular cloning: A laboratory manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Scholz-Schroeder, B. K., Hutchison, M. L., Grgurina, I., and Gross, D. C. 2001. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol. Plant Microbe Interact. 14:336-348.
Scholz-Schroeder, B. K., Soule, J. D., and Gross, D. C. 2003. The sypA, sypB, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol. Plant Microbe Interact. 16:271-280.
Shanks, R. M. Q., Caiazza, N. C., Hinsa, S. M., Toutain, C. M., and O'Toole, G. A. 2006. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl. Environ. Microbiol. 72:5027-5036.
Shirakawa, T., and Ozaki, K. 1993. Ultrastructural changes of lettuce tissue due to Pseudomonas cichorii and cichorin. Ann. Phytopathol. Soc. Jpn. 59:316.
Simon, R., Priefer, U., and Puhler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gramnegative bacteria. Nat. Biotechnol. 1:784-791.
Stachelhaus, T., Mootz, H. D., and Marahiel, M. A. 1999. The specificityconferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6:493-505.
Velasco-García, R., González-Segura, L., and Muñoz-Clares, R. A. 2000. Steady-state kinetic mechanism of the NADP+- and NAD+-dependent reactions catalysed by betaine aldehyde dehydrogenase from Pseudomonas aeruginosa. Biochem. J. 352:675-683.
Ward, J. L., Forcat, S., Beckmann, M., Bennett, M., Miller, S. J., Baker, J. M., Hawkins, N. D., Vermeer, C. P., Lu, C., Lin, W., Truman, W. M., Beale, M. H., Draper, J., Mansfield, J. W., and Grant, M. 2010. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant J. 63:443-457.
Wargo, M. J. 2013. Homeostasis and catabolism of choline and glycine betaine: Lessons from Pseudomonas aeruginosa. Appl. Environ. Microbiol. 79:2112-2120.
Wilkie, P. J., and Dye, D. W. 1974. Pseudomonas cichorii causing tomato and celery diseases in New Zealand. N. Zeal. J. Agr. Res. 17:123-130.
Yu, S.-M., and Lee, Y. H. 2012. First report of Pseudomonas cichorii associated with leaf spot on soybean in South Korea. Plant Dis. 96:142.
Yu, X., Lund, S. P., Scott, R. A., Greenwald, J. W., Records, A. H., Nettleton, D., Lindow, S. E., Gross, D. C., and Beattie, G. A. 2013. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc. Natl. Acad. Sci. U.S.A. 110:E425-E434.
Zeisel, S. H., Mar, M. H., Howe, J. C., and Holden, J. M. 2003. Concentrations of choline-containing compounds and betaine in common foods. J. Nutr. 133:1302-1307.