[en] We report the detection of intense emission from magnesium and iron in Mars' atmosphere caused by a meteor shower following Comet Siding Spring's close encounter with Mars. The observations were made with the Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft orbiting Mars. Ionized magnesium caused the brightest emission from the planet's atmosphere for many hours, resulting from resonant scattering of solar ultraviolet light. Modeling suggests a substantial fluence of low-density dust particles 1–100 µm in size, with the large amount and small size contrary to predictions. The event created a temporary planet-wide ionospheric layer below Mars' main dayside ionosphere. The dramatic meteor shower response at Mars is starkly different from the case at Earth, where a steady state metal layer is always observable but perturbations caused by even the strongest meteor showers are challenging to detect.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Schneider, Nick
Deighan, Justin
Stewart, Ian
McClintock, Bill
Jain, Sonal
Chaffin, Mike
Stiepen, Arnaud ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A'Hearn, M. F., J. T. Ohlmacher, and, D. G. Schleicher, (1983), A high resolution solar atlas for fluorescence calculations, Tech. Rep. AP83-044, Univ. of Maryland.
Anderson, J. G., and, C. A. Barth, (1971), Rocket investigation of the Mg I and Mg II dayglow, J. Geophys. Res., 76, 3723-3732, doi: 10.1029/JA076i016p03723.
Asher, D. J., (1999), The Leonid meteor storms of 1833 and 1966, Mon. Not. R. Astron. Soc., 307, 919-924.
Benna, M., P. R. Mahaffy, J. M. Grebowsky, J. M. C. Plane, R. V. Yelle, and, B. M. Jakosky, (2015), Metallic ions in the upper atmosphere of Mars from the passage of Comet Siding Spring, Geophys. Res. Lett., 42, doi: 10.1002/2015GL064120.
Brownlee, D. E., (1978), Interplanetary dust: Possible implications for comets and presolar interstellar grains, in Protostars and Planets, edited by, T. Gehrels, pp. 134-150, Univ. of Ariz. Press, Tucson.
Dhomse, S. S., R. W. Saunders, W. Tian, M. P. Chipperfield, and, J. M. C. Plane, (2013), Plutonium-238 observations as a test of modeled transport and surface deposition of meteoric smoke particles, Geophys. Res. Lett., 40, 4454-4458, doi: 10.1002/grl.50840.
Dymond, K. F., K. D. Wolfram, S. A. Budzien, A. C. Nicholas, R. P. McCoy, and, R. J. Thomas, (2003), Middle ultraviolet emission from ionized iron, J. Geophys. Res., 30 (1), 1003, doi: 10.1029/2002GL015060.
Gladstone, G. R., (1982), Radiative transfer with partial frequency redistribution in inhomogeneous atmospheres: Application to the Jovian aurora, JQSRT, 27, 545-556.
Grebowsky, J. M., R. A. Goldberg, and, W. D. Pesnell, (1998), Do meteor showers perturb the ionosphere, J. Atmos. Space Phys., 60, 607-615.
Gurnett, D. A., D. D. Morgan, A. M. Persoon, L. J. Granroth, A. J. Kopf, J. J. Plaut, and, J. L. Green, (2015), An ionized layer in the upper atmosphere of Mars caused by dust impacts from Comet Siding Spring, Geophys. Res. Lett., 42, doi: 10.1002/2015GL063726.
Jakosky, B., et al., (2015), The 2013 Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars, Space Sci. Rev., doi: 10.1007/s11214-015-0139-x.
Kelleher, D. E., and, L. I. Podobedova, (2008), Atomic transition probabilities of sodium and magnesium: A critical compilation, J. Phys. Chem. Ref. Data, 37, 267-706.
Kelley, M. S. P., T. L. Farnham, D. Bodewits, P. Tricarico, and, D. Farnocchia, (2014), A study of dust and gas at Mars from comet C/2013 A1 (Siding Spring), Astrophys. J. Lett., 792, L16, doi: 10.1088/2041-8205/792/1/L16.
Langowski, M. P., C. von Savigny, J. P. Burrows, W. Feng, J. M. C. Plane, D. R. Marsh, D. Janches, M. Sinnhuber, A. C. Aikin, and, P. Liebing, (2015), Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM-Mg model results, Atmos. Chem. Phys., 15, 273-295.
Leblanc, F., J. Y. Chaufray, J. Lilensten, O. Witasse, and, J.-L. Bertaux, (2006), Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express, J. Geophys. Res., 111, E09S11, doi: 10.1029/2005JE002664.
McClintock, B., (2014), SORCE SOLSTICE FUV level 3 solar spectral irradiance daily means, version 013, NASA Goddard Earth Sci. Data and Inf. Services Cent. (GES DISC), Greenbelt, Md. [Available at http://disc.sci.gsfc.nasa.gov/datacollection/SOR3SOLFUVD-V013.html.]
McClintock, W. E., N. M. Schneider, G. M. Holsclaw, A. C. Hoskins, I. Stewart, J. Deighan, J. T. Clarke, F. Montmessin, and, R. V. Yelle, (2014), The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission, Space Sci. Rev., doi: 10.1007/s11214-014-0098-7.
Moorhead, A. V., P. A. Wiegert, and, W. J. Cooke, (2014), The meteoroid fluence at Mars due to comet C/2013 A1 (Siding Spring), Icarus, 231, 13.
Restano, M., J. J. Plaut, B. A. Campbell, Y. Gim, D. Nunes, F. Bernardini, A. Egan, R. Seu, and, R. J. Phillips, (2015), Effects of the passage of comet C/2013 A1 (Siding Spring) observed by the Shallow Radar (SHARAD) on Mars Reconnaissance Orbiter, Geophys. Res. Lett., 42, doi: 10.1002/2015GL064150.
Saunders, R. W., and, J. M. C. Plane, (2006), A laboratory study of meteor smoke analogues: Composition, optical properties and growth kinetics, J. Atmos. Sol. Terr. Phys., 68, 2182-2202.
Smith, P. L., C. Heise, J. R. Esmond, and, R. L. Kurucz, (1995), Atomic spectral line database [from CD-ROM 23 of R.L. Kurucz], Smithsonian Astrophysical Observatory, Cambridge. [Available at http://cfa-www.harvard.edu/amp.]
Stevens, M. H., et al., (2011), The production of Titan's ultraviolet nitrogen airglow, J. Geophys. Res., 116, A05304, doi: 10.1029/2010JA016284.
Strickland, D. J., J. Bishop, J. S. Evans, T. Majeed, P. M. Shen, R. J. Cox, R. Link, and, R. E. Huffman, (1999), Atmospheric Ultraviolet Radiance Integrated Code (AURIC): Theory, software architecture, inputs, and selected results, JQSRT, 62, 689-742.
Tricarico, P., N. H. Samarasinha, M. V. Sykes, J.-Y. Li, T. L. Farnham, M. S. P. Kelley, D. Farnocchia, R. Stevenson, J. M. Bauer, and, R. E. Lock, (2014), Delivery of dust grains from comet C/2013 A1 (Siding Spring) to Mars, Astrophys. J. Lett., 787, L35, doi: 10.1088/2041-8205/787/2/L35.
Vaubaillon, J., L. Maquet, and, R. Soja, (2014), Meteor hurricane at Mars on 2014 October 19 from comet C/2013 A1, Mon. Not. R. Astron. Soc., 439, 3294-3299.
Vondrak, T., J. M. C. Plane, S. L. Broadley, and, D. Janches, (2008), A chemical model of meteoric ablation, Atmos. Chem. Phys., 8, 7015-7031.
Whalley, C. L., and, J. M. C. Plane, (2010), Meteoric ion layers in the Martian atmosphere, Faraday Discuss., 147, 349-368.
Withers, P., (2014), Predictions of the effects of Mars's encounter with comet C/2013 A1 (Siding Spring) upon metal species in its ionosphere, Geophys. Res. Lett., 41, 6635-6643, doi: 10.1002/2014GL061481.
Withers, P., M. Mendillo, D. P. Hinson, and, K. Cahoy, (2008), Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment, J. Geophys. Res., 113, A12314, doi: 10.1029/2008JA013636.
Ye, Q.-Z., and, M.-T. Hui, (2014), An early look of comet C/2013 A1 (Siding Spring): Breathtaker or nightmare?, Astrophys. J., 787, 115.
Yelle, R., A. Mahieux, S. Morrison, V. Vuitton, and, S. M. Hörst, (2014), Perturbation of the Mars atmosphere by the near-collision with comet C/2013 A1 (Siding Spring), Icarus, 237, 202-210, doi: 10.1016/j.icarus.2014.03.030.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.