[en] During its life span a plant has to cope with numerous and diverse constraints, which, contrary to most laboratory-trials, generally don’t come one by one. Plants therefore have evolved a general adaptation syndrome, a set of molecular responses activated when exposed to various stresses. Apart from these general stress-responsive events, specific constraints result in the activation of specific responses. A major determinant in the global distribution of plant species is cold. The second constraint used in this study, cadmium exposure, is more of local importance. A poplar clone (Populus tremula L.) was exposed to cold, Cd and their combination and the proteome-level effects were determined. Changes in protein abundance were qualified as being either cold, Cd or general stress responsive. All treatments significantly affected plant growth but cold, singly and in combination, resulted in a complete growth arrest and effects on the Fv/Fm ratio. Proteins involved in the methionine pathway to activated methyl groups are specifically cold-responsive, as most of the heat shock proteins and proteins with known membrane-stabilizing properties. Proteins involved in mitochondrial protein import and maturation and proteins involved in nitrogen metabolism are among the specifically Cd-responsive proteins.
Sergeant, Kjell; Centre de Recherche Public Gabriel Lippmann, 41,rue du Brill, L-4422 Belvaux, Luxembourg > Department Environment and Agro-biotechnologies
Kieffer, Pol; Centre de Recherche Public Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg > Department Environment and Agro-biotechnologies
Dommes, Jacques ; Université de Liège > Département des sciences de la vie > Biologie moléculaire et biotechnologie végétales
Hausman, Jean-François; Centre de Recherche Public Gabriel Lippman, 41, rue du Brill, L-4422 Belvaux, Luxembourg > Department Environment and Agro-biotechnologies
Renaut, Jenny; Centre de Recherche Public Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg > Department Environment and Agro-biotechnologies
Language :
English
Title :
Proteomic changes in leaves of poplar exposed to both cadmium and low-temperature
Abo-Ogiala A., Carsjens C., Diekmann H., Fayyaz P., Herrfurth C., Feussner I., Polle A. Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J. Plant Physiol. 2014, 171:250-259.
Ahsan N., Renaut J., Komatsu S. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 2009, 9:2602-2621.
Alcázar R., Cuevas J.C., Planas J., Zarza X., Bortolotti C., Carrasco P., Salinas J., Tiburcio A.F., Altabella T. Integration of polyamines in the cold acclimation response. Plant Sci. 2011, 180:31-38.
Amata O., Marino T., Russo N., Toscano M. A proposal for mitochondrial processing peptidase catalytic mechanism. J. Am. Chem. Soc. 2011, 133:17824-17831.
Amme S., Matros A., Schlesier B., Mock H.P. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J. Exp. Bot. 2006, 57:1537-1546.
Andresen E., Kupper H. Cadmium toxicity in plants. Cadmium: From Toxicity to Essentiality 2013, 395-413. Springer+Business Media, Dordrecht. A. Sigel, H. Sigel, R.K.O. Sigel (Eds.).
Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55:373-399.
Arisi A.-C.M., Mocquot B., Lagriffoul A., Mench M., Foyer C.H., Jouanin L. Responses to cadmium in leaves of transformed poplars overexpressing g-glutamylcysteine synthetase. Physiol. Plant. 2000, 109:143-149.
Bassett C.L., Wisniewski M.E., Artlip T.S., Norelli J.L., Renaut J., Farrell R.E. Global analysis of genes regulated by low temperature and photoperiod in peach bark. J. Am. Soc. Hortic. Sci. 2006, 131:551-563.
Bohler S., Sergeant K., Lefevre I., Jolivet Y., Hoffmann L., Renaut J., Dizengremel P., Hausman J.F. Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. Tree Physiol. 2010, 30:1415-1432.
Bohler S., Sergeant K., Hoffmann L., Dizengremel P., Hausman J.F., Renaut J., Jolivet Y. A difference gel electrophoresis study on thylakoids isolated from poplar leaves reveals a negative impact of ozone exposure on membrane proteins. J. Proteome Res. 2011, 10:3003-3011.
Bohnert H.J., Jensen R.G. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 1996, 14:89-97.
Chaffei C., Pageau K., Suzuki A., Gouia H., Ghorbel M.H., Masclaux-Daubresse C. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 2004, 45:1681-1693.
Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 88:1707-1719.
Cuypers A., Smeets K., Ruytinx J., Opdenakker K., Keunen E., Remans T., Horemans N., Vanhoudt N., Van Sanden S., Van Belleghem F., Guisez Y., Colpaert J., Vangronsveld J. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J. Plant Physiol. 2011, 168:309-316.
Dias M.C., Monteiro C., Moutinho-Pereira J., Correia C., Gonçalves B., Santos C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant 2013, 35:1281-1289.
Diaz C., Lemaitre T., Christ A., Azzopardi M., Kato Y., Sato F., Morot-Gaudry J.F., Le Dily F., Masclaux-Daubresse C. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiol. 2008, 147:1437-1449.
Durand T.C., Sergeant K., Planchon S., Carpin S., Label P., Morabito D., Hausman J.F., Renaut J. Acute metal stress in Populus tremula×P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by cadmium(2+). Proteomics 2010, 10:349-368.
Durand T.C., Sergeant K., Renaut J., Planchon S., Hoffmann L., Carpin S., Label P., Morabito D., Hausman J.F. Poplar under drought: comparison of leaf and cambial proteomic responses. J. Proteomics 2011, 74:1396-1410.
Frenette Charron J.B., Breton G., Badawi M., Sarhan F. Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis. FEBS Lett. 2002, 517:129-132.
Garnier L., Simon-Plas F., Thuleau P., Agnel J.-P., Blein J.-P., Ranjeva R., Montillet J.-L. Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ. 2006, 29:1956-1969.
Gou Y., Cai Z., Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ. 2004, 27:521-549.
Hewezi T., Leger M., El Kayal W., Gentzbittel L. Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. J. Exp. Bot. 2006, 57:3109-3122.
Hradilova J., Rehulka P., Rehulkova H., Vrbova M., Griga M., Brzobohaty B. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 2010, 31:421-431.
Jaquinod M., Villiers F., Kieffer-Jaquinod S., Hugouvieux V., Bruley C., Garin J., Bourguignon J. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture. Mol. Cell. Proteomics 2007, 6:394-412.
Kaplan F., Kopka J., Haskell D.W., Zhao W., Schiller K.C., Gatzke N., Sung D.Y., Guy C.L. Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol. 2004, 136:4159-4168.
Kav N.V.N., Srivastava S., Goonewardene L., Blade S.F. Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann. Appl. Biol. 2004, 145:217-230.
Kieffer P., Dommes J., Hoffmann L., Hausman J.F., Renaut J. Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 2008, 8:2514-2530.
Kieffer P., Planchon S., Oufir M., Ziebel J., Dommes J., Hoffmann L., Hausman J.F., Renaut J. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J. Proteome Res. 2009, 8:400-417.
Kieffer P., Schröder P., Dommes J., Hoffmann L., Renaut J., Hausman J.F. Proteomic and enzymatic response of poplar to cadmium stress. J. Proteomics 2009, 72:379-396.
Kmiec B., Teixeira P.F., Berntsson R.P., Murcha M.W., Branca R.M., Radomiljac J.D., Regberg J., Svensson L.M., Bakali A., Langel U., Lehtio J., Whelan J., Stenmark P., Glaser E. Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts. Proc. Natl. Acad. Sci. U. S. A. 2013, 110:E3761-E3769.
Kocheva K., Lambrev P., Georgiev G., Goltsev V., Karabaliev M. Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 2004, 63:121-124.
Kosova K., Vitamvas P., Prášil I. The role of dehydrins in plant response to cold. Biol. Plantarum 2007, 51:601-617.
Kranner I., Minibayeva F.V., Beckett R.P., Seal C.E. What is stress? Concepts, definitions and applications in seed science. New Phytol. 2010, 188:655-673.
Lagriffoul A., Mocquot B., Mench M., Vangronsveld J. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil. 1998, 200:241-250.
Laureysens I., De Temmerman L., Hastir T., Van Gysel M., Ceulemans R. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture II. Vertical distribution and phytoextraction potential. Environ. Pollut. 2005, 133:541-551.
Márques-Garciá B., Horemans N., Torronteras R., Córdoba F. Glutathione depletion in healthy cadmium-exposed Erica andevalensis. Environ. Exp. Bot. 2012, 75:159-166.
Mendoza-Cozatl D., Loza-Tavera H., Hernandez-Navarro A., Moreno-Sanchez R. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 2005, 29:653-671.
Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11:15-19.
Moroney J.V., Bartlett S.G., Samuelsson G. Carbonic anhydrases in plants and algae. Plant Cell Environ. 2001, 24:141-153.
Moskovitz J., Bar-Noy S., Williams W.M., Requena J., Berlett B.S., Stadtman E.R. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. U. S. A. 2001, 98:12920-12925.
Narita Y., Taguchi H., Nakamura T., Ueda A., Shi W., Takabe T. Characterization of the salt-inducible methionine synthase from barley leaves. Plant Sci. 2004, 167:1009-1016.
Oliveira I.C., Brears T., Knight T.J., Clark A., Coruzzi G.M. Overexpression of cytosolic glutamine synthetase Relation to nitrogen, light, and photorespiration. Plant Physiol. 2002, 129:1170-1180.
Oufir M., Legay S., Nicot N., Van Moer K., Hoffmann L., Renaut J., Hausman J.F., Evers D. Gene expression in potato during cold exposure: changes in carbohydrate and polyamine metabolisms. Plant Sci. 2008, 175:839-852.
Phee B.-K., Cho J.-H., Park S., Jung J.H., Lee Y.-H., Jeon J.-S., Bhoo S.H., Hahn T.-R. Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomics 2004, 4:3560-3568.
Pietrini F., Zacchini M., Iori V., Pietrosanti L., Bianconi D., Massacci A. Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int. J. Phytoremediation 2009, 12:105-120.
Pilipovic A., Nikolic N., Orlovic S., Petrovic N., Krstic B. Cadmium phytoextraction potential of poplar clones (Populus spp.). Z. Naturforsch. C 2005, 60:247-251.
Prasad M.N.V. Cadmium toxicity and tolerance in vascular plants. Environ. Exp. Bot. 1995, 35:525-545.
Printz B., Sergeant K., Lutts S., Guignard C., Renaut J., Hausman J.F. From tolerance to acute metabolic deregulation: contribution of proteomics to dig into the molecular response of alder species under a polymetallic exposure. J. Proteome Res. 2013, 12:5160-5179.
Rabbani M.A., Maruyama K., Abe H., Khan M.A., Katsura K., Ito Y., Yoshiwara K., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003, 133:1755-1767.
Ralph S.G., Jancsik S., Bohlmann J. Dirigent proteins in conifer defense II: extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 2007, 68:1975-1991.
Renaut J., Lutts S., Hoffmann L., Hausman J.F. Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol. 2004, 6:81-90.
Renaut J., Hoffmann L., Hausman J.F. Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiol. Plant. 2005, 125:82-95.
Renaut J., Hausman J.F., Wisniewski M.E. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol. Plant. 2006, 126:97-109.
Renaut J., Bohler S., Hausman J.F., Hoffmann L., Sergeant K., Ahsan N., Jolivet Y., Dizengremel P. The impact of atmospheric composition on plants: a case study of ozone and poplar. Mass Spectrom. Rev. 2009, 28:495-516.
Romero H.M., Berlett B.S., Jensen P.J., Pell E.J., Tien M. Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiol. 2004, 136:3784-3794.
Romero-Puertas M.C., Rodriguez-Serrano M., Corpas F.J., Gomez M., Del Rio L.A., Sandalio L.M. Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ. 2004, 27:1122-1134.
Sabehat A., Lurie S., Weiss D. Expression of small heat-shock proteins at low temperatures. A possible role in protecting against chilling injuries. Plant Physiol. 1998, 117:651-658.
Salekdeh G.H., Siopongco J., Wade L., Ghareyazie B., Bennet J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2002, 2:1131-1145.
Sanita di Toppi L., Gabbrielli R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41:105-130.
Sannigrahi P., Ragauskas A.J., Tuskan G.A. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod. Biorefining 2010, 4:209-226.
Satarug S., Baker J.R., Urbenjapol S., Haswell-Elkins M., Reilly P.E.B., Williams D.J., Moore M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137:65-83.
Selye H. The general-adaptation-syndrome. Annu. Rev. Med. 1951, 2:327-342.
Suzuki N., Koussevitzky S., Mittler R., Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012, 35:259-270.
Taji T., Ohsumi C., Iuchi S., Seki M., Kasuga M., Kobayashi M., Yamaguchi-Shinozaki K., Shinozaki K. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 2002, 29:417-426.
Tan Y.F., O'Toole N., Taylor N.L., Millar A.H. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol. 2010, 152:747-761.
Tarrago L., Laugier E., Rey P. Protein-repairing methionine sulfoxide reductases in photosynthetic organisms: gene organization, reduction mechanisms, and physiological roles. Mol. Plant 2009, 2:202-217.
Teixeira P.F., Glaser E. Processing peptidases in mitochondria and chloroplasts. Biochim. Biophys. Acta 2013, 1833:360-370.
Theocharis A., Clement C., Barka E.A. Physiological and molecular changes in plants grown at low temperatures. Planta 2012, 235:1091-1105.
Thomashow M.F. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol. 2010, 154:571-577.
Torabi S., Wissuwa M., Heidari M., Naghavi M.R., Gilany K., Hajirezaei M.R., Omidi M., Yazdi-Samadi B., Ismail A.M., Salekdeh G.H. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics 2009, 9:159-170.
Tsuji A., Fujisawa Y., Mino T., Yuasa K. Identification of a plant aminopeptidase with preference for aromatic amino acid residues as a novel member of the prolyl oligopeptidase family of serine proteases. J. Biochem. 2011, 150:525-534.
Wahid A., Arshad M., Farooq M. Cadmium phytotoxicity: responses, mechanisms and mitigation strategies: a review. Organic Farming, Pest Control and Remediation of Soil Pollutants 2009, 371-404. Springer, Dordrecht, Netherlands. E. Lichtfouse (Ed.).
Wisniewski M.E., Bassett C.L., Renaut J., Farrell R., Tworkoski T., Artlip T.S. Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol. 2006, 26:575-584.
Wu F., Yang W., Zhang J., Zhou L. Cadmium accumulation and growth responses of a poplar (Populus deltoides×Populus nigra) in cadmium contaminated purple soil and alluvial soil. J. Hazard. Mater. 2010, 177:268-273.
Yang X., Kalluri U., Difazio S., Wullschleger S., Tschaplinski T.J., Cheng M., Tuskan G.A. Poplar genomics: state of the science. Crit. Rev. Plant Sci. 2009, 28:285-308.
Zacchini M., Iori V., Scarascia Mugnozza G., Pietrini F., Massacci A. Cadmium accumulation and tolerance in Populus nigra and Salix alba. Biol. Plantarum 2011, 55:383-386.
Zhang S., Jiang H., Peng S., Korpelainen H., Li C. Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling. J. Exp. Bot. 2011, 62:675-686.
Zhang S., Feng L., Jiang H., Ma W., Korpelainen H., Li C. Biochemical and proteomic analyses reveal that Populus cathayana males and females have different metabolic activities under chilling stress. J. Proteome Res. 2012, 11:5815-5826.
Zoffoli H.J., do Amaral-Sobrinho N.M., Zonta E., Luisi M.V., Marcon G., Tolon-Becerra A. Inputs of heavy metals due to agrochemical use in tobacco fields in Brazil's Southern Region. Environ. Monit. Assess. 2013, 185:2423-2437.