Glasses; Aging; ab initio simulation; phase change material
Abstract :
[en] Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases
Disciplines :
Physics
Author, co-author :
Raty, Jean-Yves ; Université de Liège > Département de physique > Physique expérimentale des matériaux nanostructurés
Zhang, wei
Luckas, Jennifer
Chen, Chao
Mazzarello, Riccardo
Bichara, Christophe
Wuttig, Matthias
Language :
English
Title :
Aging mechanisms in amorphous phase-change materials
Publication date :
24 June 2015
Journal title :
Nature Communications
eISSN :
2041-1723
Publisher :
Nature Pub.lishing Group, London, United Kingdom
Volume :
6
Issue :
7467
Pages :
1-8
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
F.R.S.-FNRS - Fonds de la Recherche Scientifique DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie RWTH Aachen - Rheinisch-Westfälische Technische Hochschule Aachen ANR - Agence Nationale de la Recherche
Funding text :
We gratefully acknowledge the computational resources provided by (a) the Consortium des Equipements de Calcul Intensif, funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, (b) the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n°1117545 and (c) JARA-HPC from RWTH Aachen University under project JARA0089. Support from the ARC ‘Themoterm’ grant for J.-Y.R., DFG (German Science Foundation) within the collaborative research centre SFB 917 ‘Nanoswitches’ for W.Z., R.M. and M.W., ANR (French Research Funding Agency) Grant No. ANR-11- BS08-0012 ‘TeAm’ for C.B is also acknowledged. J.L. thanks R. Carius and J. KlomfaB for the PDS measurements. The crystal structures in this paper are plotted by using the
software POV-Ray.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Struik, L. C. E. Physical Aging in Amorphous Polymers and Other Materials (Elsevier, 1978).
Hodge, I. M. Physical aging in polymer glasses. Science 267, 1945-1947 (1995).
Priestley, R. D., Ellison, C. J., Broadbelt, L. J. & Torkelson, J. M. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309, 456-459 (2005).
Fehr, M. et al. Metastable defect formation at microvoids identified as a source of light-induced degradation in a-Si:H. Phys. Rev. Lett. 112, 066403 (2014).
Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824-832 (2007).
Raoux, S., Welnic, W. & Ielmini, D. Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240-267 (2010).
Pirovano, A. et al. Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 714-719 (2004).
Ielmini, D., Lacaita, A. L. & Mantegazza, D. Recovery and drift dynamics of resistance and threshold voltages in phase-change memories. IEEE Trans. Electron Devices 54, 308-315 (2007).
Karpov, I. V. et al. Fundamental drift of parameters in chalcogenide phase change memory. J. Appl. Phys. 102, 124503 (2007).
Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841-3851 (1932).
Kolobov, A. V. et al. Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703-708 (2004).
Matsunaga, T. et al. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129-134 (2011).
Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).
Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653-658 (2008).
Lencer, D. et al. A map for phase-change materials. Nat. Mater. 7, 972-977 (2008).
Matsunaga, T. et al. Phase-change materials: vibrational softening upon crystallization and its impact on thermal properties. Adv. Fun. Mater. 21, 2232-2239 (2011).
Huang, B. & Robertson, J. Bonding origin of optical contrast in phase-change memory materials. Phys. Rev. B 81, 081204 (2010).
Akola, J. & Jones, R. Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe. Phys. Rev. B 76, 235201 (2007).
Micoulaut, M., Raty, J. Y., Otjacques, C. & Bichara, C. Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity. Phys. Rev. B 81, 174206 (2010).
Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials. Appl. Phys. Lett. 91, 171906 (2007).
Kalb, J., Wuttig, M. & Spaepen, F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748-754 (2007).
Zhang, W. et al. How fragility makes phase-change data storage robust: insights from ab initio simulations. Sci. Rep. 4, 6529 (2014).
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. & Takao, M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849-2856 (1991).
Wuttig, M. et al. The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 6, 122-128 (2007).
Zhang, W. et al. Role of vacancies in metal-insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952-956 (2012).
Madelung, O., Rössler, U. & Schulz, M. e. Landolt-Börnstein Volume III/17E-17F-41C Springer Materials-The Landolt-Börnstein Database.
Robinson, P. M. & Bever, M. B. Trans Met Soc 236, 814 (1966).
Finch, C. B. & Wagner, J. B. Determination of the standard free energy of formation of lead selenide. J. Electrochem. Soc. 107, 932-933 (1960).
Patnaik, P. Handbook of Inorganic Chemicals (McGraw-Hill, 2003).
Chandrasekharaiah, M. S. & Margrave, J. L. Enthalpies of formation of solid silicon dichalcogenides. J Phys. Chem. Ref. Data. 23, 499-507 (1994).
Kühne, T., Krack, M., Mohamed, F. & Parrinello, M. Efficient and accurate car-parrinello-like approach to born-oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).
Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k:atomistic simulations of condensed matter systems. Comput. Mol. Sci. 4, 15-25 (2014).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996).
Deringer, V. L. et al. Bonding nature of local structural motifs in amorphous GeTe. Angew. Chem. Int. Ed. 53, 10817-10820 (2014).
Kalb, J., Spaepen, F., Leervad Pedersen, T. P. & Wuttig, M. Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 94, 4908-4912 (2003).
Cho, J.-Y., Yang, T.-Y., Park, Y.-J. & Joo, Y.-C. Study on the resistance drift in amorphous Ge2Sb2Te5 according to defect annihilation and stress relaxation. Electrochem. Solid State Lett. 15, H81-H83 (2012).
Micoulaut, M. Van der Waals corrections for an improved structural description of telluride based materials. J. Chem. Phys. 138, 061103 (2013).
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787-1799 (2006).
Lee, K., Murray, E. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).
Parthasarathy, G. & Holzapfel, W. B. High pressure structural phase transitions in tellurium. Phys. Rev. B 37, 8499-8501 (1988).
Yu, M., Trinkle, D. R. & Martin, R. M. Energy density in density functional theory: Application to crystalline defects and surfaces. Phys. Rev. B 83, 115113 (2011).
Bichara, C. & Gaspard, J. P. Octahedral structure of liquid GeSb2Te4 alloy: First-principles molecular dynamics study. Phys. Rev. B 75, 060201 (2007).
Fantini, P., Brazzelli, S., Cazzini, E. & Mani, A. Band gap widening with time induced by structural relaxation in amorphous Ge2Sb2Te5 films. Appl. Phys. Lett. 100, 013505 (2012).
Luckas, J. et al. Defects in amorphous phase-change materials. J. Mater. Res. 28, 1139-1147 (2013).
Pan, Y., Inam, F., Zhang, M. & Drabold, D. Atomistic origin of urbach tails in amorphous silicon. Phys. Rev. Lett. 100, 206403 (2008).
Durandurdu, M., Drabold, D. A. & Mousseau, N. Approximate ab initio calculations of electronic structure of amorphous silicon. Phys. Rev. B 62, 15307-15310 (2000).
Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997-1000 (1984).
Malcioʇlu, O. B., Gebauer, R., Rocca, D. & Baroni, S. turbo TDDFT - A code for the simulation of molecular spectra using the Liouville - Lanczos approach to time-dependent density-functional perturbation theory. Comput. Phys. Commun. 182, 1744-1754 (2011).
Shaltaf, R., Durgun, E., Raty, J. Y., Ghosez, P. & Gonze, X. Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density functional theory. Phys. Rev. B 78, 205203 (2008).
Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997).
Mitrofanov, K. V. et al. Ge L3-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge2Sb2Te5. J. Appl. Phys. 115, 173501 (2014).
Fantini, P., Ferro, M., Calderoni, A. & Brazzelli, S. Disorder enhancement due to structural relaxation in amorphous Ge2Sb2Te5. Appl. Phys. Lett. 100, 213506 (2012).
VandeVondele, J. et al. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103-128 (2005).
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703-1710 (1996).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21, 395502 (2009).
Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048-5079 (1981).
Jackson, A. B., Amer, N. M., Boccara, A. C. & Fournier, D. Photothermal deflection spectroscopy and detection. Appl. Opt. 20, 1333-1344 (1981).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.