Reference : A novel col10a1:nlGFP transgenic line displays osteoblast precursors at the medaka no...
Scientific journals : Article
Life sciences : Genetics & genetic processes
http://hdl.handle.net/2268/183183
A novel col10a1:nlGFP transgenic line displays osteoblast precursors at the medaka notochordal sheath prior to mineralization.
English
Renn, Jörg mailto [Université de Liège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire >]
Buettner, A [National Univeristy of Singapore > Department of Biological Sciences > > >]
To, TT [National Univeristyof Singapore > Department of Biological Sciences > > >]
Chan [National University of Singapore > Department of Biological Sciences > > >]
Winkler, C [National University of Singapore > Department of Biological Sciences > > >]
13-Jun-2013
Developmental Biology
Academic Press
381
134-143
Yes (verified by ORBi)
International
0012-1606
1095-564X
Orlando
FL
[en] Collagen10 ; ossification ; Vertebra formation ; osteoblast ; Notochordal sheath ; medaka ; bone
[en] In teleosts, such as medaka, ossification of the vertebral column starts with the mineralization of the notochordal sheath in a segmental pattern. This establishes the chordal centrum, which serves as the basis for further ossifications by sclerotome derived osteoblasts generating the vertebral body. So far, it is unclear which cells produce the notochordal sheath and how a segmental pattern of mineralization is established in teleosts. Here, we use a transgenic medaka line that expresses nlGFP under the control of the col10a1 promoter for in vivo analysis of vertebral body formation. We show that col10a1:nlGFP expression recapitulates endogenous col10a1 expression. In the axial skeleton, col10a1:nlGFP cells appear prior to the mineralization of the notochordal sheath in a segmental pattern. These cells remain on the outer surface of the chordal centra during mineralization as well as subsequent perichordal ossification of the vertebral bodies. Using twist1a1:dsRed and osx:mCherry transgenic lines we show that a subset of col10a1:nlGFP cells is derived from sclerotomal precursors and differentiates into future osteoblasts. For the first time, this shows a segmental occurrence of putative osteoblast precursors in the vertebral centra prior to ossification of the notochordal sheath. This opens the possibility that sclerotome derived cells in teleosts are implicated in the establishment of the mineralized vertebral column in a similar manner as previously described for tetrapods.
Researchers
http://hdl.handle.net/2268/183183

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
Renn et al 2013.pdfPublisher postprint6.8 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.