Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites
Haghgoo, M.; Yousefi, A. A.; Mehr, M. J. Z.et al.
2015 • In Journal of Materials Science, 20, p. 6007-6020
Chemical engineering Materials science & engineering
Author, co-author :
Haghgoo, M.; Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran > Plastic Processing & Engineering Department
Yousefi, A. A.; Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran > Plastic Processing & Engineering Department
Mehr, M. J. Z.; Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran > Plastic Processing & Engineering Department
Léonard, Alexandre ; Université de Liège > Department of Chemical Engineering > Ingéniérie électrochimique
Philippe, Matthieu ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Compère, Philippe ; Université de Liège > Département de Biologie, Ecologie et Evolution > Département de Biologie, Ecologie et Evolution
Léonard, Angélique ; Université de Liège > Département de chimie appliquée > Génie chimique - Procédés et développement durable
Job, Nathalie ; Université de Liège > Département de chimie appliquée > Ingéniérie électrochimique
Language :
English
Title :
Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites
Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227. doi:10.1007/BF01139044
Maldonado-Hódar FJ (2013) Advances in the development of nanostructured catalysts based on carbon gels. Catal Today 218:43–50
Kim SJ, Hwang SW, Hyun SH (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40:725–731. doi:10.1007/s10853-005-6313-x
Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54:7444–7451
Wiener M, Reichenauer G, Braxmeier S et al (2009) Carbon aerogel-based high-temperature thermal insulation. Int J Thermophys 30:1372–1385
Gao X, Omosebi A, Landon J, Liu K (2015) Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ Sci 8:897–909
Liu N, Shen J, Liu D (2013) A Fe 2 O 3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries. Electrochim Acta 97:271–277
Worsley MA, Pauzauskie PJ, Kucheyev SO et al (2009) Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading. Acta Mater 57:5131–5136
Bordjiba T, Mohamedi M (2011) Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites. J Solid State Electrochem 15:765–771
Bouchard J, Cayla A, Devaux E, Campagne C (2013) Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Compos Sci Technol 86:177–184
Périé T, Brosse A-C, Tencé-Girault S, Leibler L (2012) Mechanical and electrical properties of multi walled carbon nanotube/ABC block terpolymer composites. Carbon 50:2918–2928
Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260:89–94
Bryning M. B.: Carbon nanotube networks in epoxy composites and aerogels. PhD Dissertation, University of Pennsylvania (2007)
Sahoo NG, Rana S, Cho JW et al (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867
Li J, Ma PC, Chow WS et al (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215
Bao H, Sun Y, Xiong Z et al (2013) Effects of the dispersion state and aspect ratio of carbon nanotubes on their electrical percolation threshold in a polymer. J Appl Polym Sci 128:735–740
Park KS, Youn JR (2012) Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composites. Carbon 50:2322–2330
Haghgoo M, Plougonven E, Yousefi AA et al (2012) Use of X-ray microtomography to study the homogeneity of carbon nanotube aqueous suspensions and carbon nanotube/polymer composites. Carbon 50:1703–1706
Haghgoo M, Yousefi AA, Mehr MJZ et al (2014) Characterization of multi-walled carbon nanotube dispersion in resorcinol–formaldehyde aerogels. Microporous Mesoporous Mater 184:97–104
Job N, Sabatier F, Pirard J-P et al (2006) Towards the production of carbon xerogel monoliths by optimizing convective drying conditions. Carbon 44:2534–2542
Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci USA 7:115–116
Job N, Pirard R, Pirard J, Alié C (2006) Non Intrusive Mercury Porosimetry: pyrolysis of Resorcinol-Formaldehyde Xerogels. Part Part Syst Charact 23:72–81
Job N, Pirard R, Marien J, Pirard J-P (2004) Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42:619–628
White B, Banerjee S, O’Brien S et al (2007) Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C 111:13684–13690
Zhao W, Song C, Pehrsson PE (2002) Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J Am Chem Soc 124:12418–12419
Heister E, Lamprecht C, Neves V et al (2010) Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4:2615–2626
Feng J, Zhang C, Feng J et al (2011) Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Appl Mater Interfaces 3:4796–4803
Job N, Théry A, Pirard R et al (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43:2481–2494
Haghgoo M, Yousefi AA, Mehr MJZ (2012) Nano porous structure of resorcinol–formaldehyde xerogels and aerogels: effect of sodium dodecylbenzene sulfonate. Iran Polym J 21:211–219
Bordjiba T, Mohamedi M, Dao LH (2007) Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels. J Power Sources 172:991–998
Kohlmeyer RR, Lor M, Deng J et al (2011) Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon 49:2352–2361
Sandler JKW, Kirk JE, Kinloch IA et al (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899
Celzard A, McRae E, Deleuze C et al (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53:6209
Celzard A, Marêché JF, Payot F, Furdin G (2002) Electrical conductivity of carbonaceous powders. Carbon 40:2801–2815
Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites. Adv Mater 17:1186–1191
Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67:922–928
Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498
Schueler R, Petermann J, Schulte K, Wentzel H (1997) Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. J Appl Polym Sci 63:1741–1746
Kilbride BE, Coleman JN, Fraysse J et al (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92:4024–4030
Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699