[en] The zinc finger transcription factor Osterix/Sp7 is an essential
regulator of osteoblastogenesis. In mammals, osterix
expression is regulated by Runx2, Msx2 and Dlx5 but recent
findings suggest that also retinoic acid plays an important
role for osteoblast differentiation and function. Yet, how
these and other factors act on the osterix promoter is largely
unknown. Expression, knock-down and promoter analyses
have indicated that the function of Osterix in osteoblasts is
conserved in teleosts and mammals. In the present study, we
have used the teleost medaka to identify and characterize a
region containing potential retinoic acid response elements in
the osterix promoter. We analysed whether this region is
important for activity in osteoblasts in vivo, using transgenic
medaka lines with modified osterix promoter regions. Promoter
activity in vivo and in vitro revealed a short nucleotide
sequence in the promoter with crucial positive regulatory
function. Mutations of this element lead to a complete inactivation
of the osterix promoter in osteoblasts and made it
insensitive to retinoic acid treatment. The comparison with
the regulatory regions of osterix in other species suggests that
the function of this element is highly conserved in vertebrates.
Disciplines :
Genetics & genetic processes
Author, co-author :
Renn, Jörg ; Université de Liège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Buettner, A; National University of Singapore > Department of Biological Sciences
Bastien, J.; Rochette-Egly, C., 2004: Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328, 1-16.
Bonsor, D.; Butz, S. F.; Solomons, J.; Grant, S.; Fairlamb, I. J.; Fogg, M. J.; Grogan, G., 2006: Ligation independent cloning (LIC) as a rapid route to families of recombinant biocatalysts from sequenced prokaryotic genomes. Org. Biomol. Chem. 4, 1252-1260.
Kinoshita, M.; Murata, K.; Naruse, K.; Tanaka, M., 2009: A laboratory manual for medaka biology. Wiley-Blackwell, Ames, pp. 254-255.
Koga, T.; Matsui, Y.; Asagiri, M.; Kodama, T.; de Crombrugghe, B.; Nakashima, K.; Takayanagi, H., 2005: NFAT and Osterix cooperatively regulate bone formation. Nat. Med. 11, 880-885.
Laue, K.; Janicke, M.; Plaster, N.; Sonntag, C.; Hammerschmidt, M., 2008: Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development 135, 3775-3787.
Laue, K.; Pogoda, H. M.; Daniel, P. B.; van Haeringen, A.; Alanay, Y.; von Ameln, S.; Rachwalski, M.; Morgan, T.; Gray, M. J.; Breuning, M. H.; Sawyer, G. M.; Sutherland-Smith, A. J.; Nikkels, P. G.; Kubisch, C.; Bloch, W.; Wollnik, B.; Hammerschmidt, M.; Robertson, S. P., 2011: Craniosynostosis and multiple skeletal anomalies in humans and zebrafish result from a defect in the localized degradation of retinoic acid. Am. J. Hum. Genet. 89, 595-606.
Lee, M. H.; Kwon, T. G.; Park, H. S.; Wozney, J. M.; Ryooa, H. M., 2003: BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem. Biophys. Res. Commun. 309, 689-694.
Li, N.; Kelsh, R. N.; Croucher, P.; Roehl, H. H., 2010: Regulation of neural crest cell fate by the retinoic acid and Pparg signalling pathways. Development 137, 389-394.
Matsubara, T.; Kida, K.; Yamaguchi, A.; Hata, K.; Ichida, F.; Meguro, H.; Aburatani, Nishimura, R.; Yoneda, T., 2008: BMP2 regulates osterix through Msx2 and Runx2 during osteoblast differentiation. J. Biol. Chem. 283, 29119-29125.
Moutier, E.; Ye, T.; Choukrallah, M. A.; Urban, S.; Osz, J.; Chatagnon, A.; Delacroix, L.; Langer, D.; Rochel, N.; Moras, D.; Benoit, G.; Davidson, I., 2012: Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J. Biol. Chem. 287, 26328-26341.
Nakashima, K.; Zhou, X.; Kunkel, G.; Zhang, Z.; Deng, J. M.; Behringer, R. R.; de Crombrugghe, B., 2002: The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17-29.
Nishio, Y.; Dong, Y.; Paris, M.; O'Keefe, R. J.; Schwarz, E. M.; Drissi, H., 2006: Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372, 62-70.
Nolte, C.; Amores, A.; Nagy Kovacs, E.; Postlethwait, J.; Featherstone, M., 2003: The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes. Mech. Dev. 120, 325-335.
Nolte, C.; Rastegar, M.; Amores, A.; Bouchard, M.; Grote, D.; Maas, R.; Kovacs, E. N.; Postlethwait, J.; Rambaldi, I.; Rowan, S.; Yan, Y. L.; Zhang, F.; Featherstone, M., 2006: Stereospecificity and PAX6 function direct Hoxd4 neural enhancer activity along the antero-posterior axis. Dev. Biol. 299, 582-593.
Pöpperl, H.; Featherstone, M. S., 1992: An autoregulatory element of the murine Hox-4.2 gene. EMBO J. 11, 3673-3680.
Renn, J.; Winkler, C., 2009: Osterix-mCherry transgenic medaka for in vivo imaging of bone formation. Dev. Dyn. 238, 241-248.
Renn, J.; Winkler, C., 2012: Osterix:nlGFP transgenic medaka identify regulatory roles for retinoic acid signaling during osteoblast differentiation in vivo. J. Appl. Ichthyol. 28, 360-363.
Renn, J.; Winkler, C., 2014: Osterix/Sp7 regulates biomineralization of otoliths and bone in medaka (Oryzias latipes). Matrix Biol. 34, 193-204.
Renn, J.; Buettner, A.; To, T. T.; Chan, S. J. H.; Winkler, C., 2013: A novel col10a1:nlGFP transgenic line displays osteoblast precursors at the medaka notochordal sheath prior to mineralization. Dev. Biol. 381, 134-143.
Spoorendonk, K. M.; Peterson-Maduro, J.; Renn, J.; Trowe, T.; Kranenbarg, S.; Winkler, C.; Schulte-Merker, S., 2008: Retinoic acid and Cyp26b1 are critical regulators of 26 osteogenesis in the axial skeleton. Development 135, 3765-3774.
Zhang, F.; Nagy Kovacs, E. N.; Featherstone, M. S., 2000: Murine hoxd4 expression in the CNS requires multiple elements including a retinoic acid response element. Mech. Dev. 96, 79-89.