[en] Total stressed blood volume is an important parameter for both doctors and engineers. From a medical point of view, it has been associated with the success or failure of fluid therapy, a primary treatment to manage acute circulatory failure. From an engineering point of view, it dictates the cardiovascular system’s behavior in changing physiological situations. Current methods to determine this parameter involve repeated phases of circulatory arrests followed by fluid administration. In this work, a more straightforward method is developed using data from a preload reduction manoeuvre. A simple six-chamber cardiovascular system model is used and its parameters are adjusted to pig experimental data. The parameter adjustment process has three steps: (1) compute nominal values for all model parameters; (2) determine the five most sensitive parameters; and (3) adjust only these five parameters. Stressed blood volume was selected by the algorithm, which emphasizes the importance of this parameter. The model was able to track experimental trends with a maximal root mean squared error of 29.2%. Computed stressed blood volume equals 486 ± 117 ml or 15.7 ± 3.6 ml/kg, which matches previous independent experiments on pigs, dogs and humans. The method proposed in this work thus provides a simple way to compute total stressed blood volume from usual hemodynamic data.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Cardiovascular & respiratory systems
Author, co-author :
Pironet, Antoine ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Desaive, Thomas ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Chase, J. Geoffrey
MORIMONT, Philippe ; Centre Hospitalier Universitaire de Liège - CHU > Frais communs médecine
Dauby, Pierre ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Thermodynamique des phénomènes irréversibles
Language :
English
Title :
Model-based computation of total stressed blood volume from a preload reduction manoeuvre
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Burkhoff D., Tyberg J.V. Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis. Am. J. Physiol. Heart Circ. Physiol. 1993, 265(5):H1819-H1828.
Maas J.J., Pinsky M.R., Aarts L.P., Jansen J.R. Bedside assessment of total systemic vascular compliance, stressed volume, and cardiac function curves in intensive care unit patients. Anesth. Analg. 2012, 115(4):880-887.
Michard F., Teboul J.-L. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit. Care 2000, 4(5):282-289.
Danielsen M., Ottesen J.T. Describing the pumping heart as a pressure source. J. Theor. Biol. 2001, 212(1):71-81. 10.1006/jtbi.2001.2348.
Ellwein L.M., Tran H.T., Zapata C., Novak V., Olufsen M.S. Sensitivity analysis and model assessment: mathematical models for arterial blood flow and blood pressure. Cardiovasc. Eng. 2008, 8(2):94-108.
Pope S.R., Ellwein L.M., Zapata C.L., Novak V., Kelley C.T., Olufsen M.S. Estimation and identification of parameters in a lumped cerebrovascular model. Math. Biosci. Eng. 2009, 6:93-115.
Revie J.A., Stevenson D.J., Chase J.G., Hann C.E., Lambermont B.C., Ghuysen A., Kolh P., Shaw G.M., Heldmann S., Desaive T. Validation of subject-specific cardiovascular system models from porcine measurements. Comput. Methods Programs Biomed. 2013, 109(2):197-210.
Smith B.W., Chase J.G., Nokes R.I., Shaw G.M., Wake G. Minimal haemodynamic system model including ventricular interaction and valve dynamics. Med. Eng. Phys. 2004, 26(2):131-139.
Klabunde R., Dalley A. Cardiovascular Physiology Concepts 2004, Lippincott Williams & Wilkins.
Abdolrazaghi M., Navidbakhsh M., Hassani K. Mathematical modelling and electrical analog equivalent of the human cardiovascular system. Cardiovasc. Eng. 2010, 10(2):45-51. 10.1007/s10558-010-9093-0.
Chung D.C. Ventricular Interaction in a Closed-loop Model of the Canine Circulation 1996, Master's thesis, Rice University, Houston, Texas.
Revie J.A., Stevenson D., Chase J.G., Pretty C.G., Lambermont B.C., Ghuysen A., Kolh P., Shaw G.M., Desaive T. Evaluation of a model-based hemodynamic monitoring method in a porcine study of septic shock. Comput. Math. Methods Med. 2013, 17. 10.1155/2013/505417.
Revie J.A., Stevenson D.J., Chase J.G., Hann C.E., Lambermont B.C., Ghuysen A., Kolh P., Morimont P., Shaw G.M., Desaive T. Clinical detection and monitoring of acute pulmonary embolism: proof of concept of a computer-based method. Ann. Intensive Care 2011, 1(1):1-12.
Smith B.W., Chase J.G., Shaw G.M., Nokes R.I. Experimentally verified minimal cardiovascular system model for rapid diagnostic assistance. Control Eng. Pract. 2005, 13(9):1183-1193.
Starfinger C., Chase J.G., Hann C.E., Shaw G.M., Lamberrmont B., Ghuysen A., Kolh P., Dauby P.C., Desaive T. Model-based identification and diagnosis of a porcine model of induced endotoxic shock with hemofiltration. Math. Biosci. 2008, 216(2):132-139.
Starfinger C., Hann C.E., Chase J.G., Desaive T., Ghuysen A., Shaw G.M. Model-based cardiac diagnosis of pulmonary embolism. Comput. Methods Programs Biomed. 2007, 87(1):46-60.
Guyton A.C., Lindsey A.W., Kaufmann B.N. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am. J. Physiol. Legacy Content 1955, 180(3):463-468.
Ogilvie R.I., Zborowska-Sluis D., Tenaschuk B. Measurement of mean circulatory filling pressure and vascular compliance in domestic pigs. Am. J. Physiol. Heart Circ. Physiol. 1990, 258(6):H1925-H1932.
Drees J.A., Rothe C.F. Reflex venoconstriction and capacity vessel pressure-volume relationships in dogs. Circ. Res. 1974, 34(3):360-373.
Goldberg R.K., Lee R.W., Olajos M., Goldman S. Development of tolerance to nitroglycerin in the arterial and venous circulation of dogs. J. Am. Coll. Cardiol. 1987, 10(6):1335-1341.
Lee R.W., Gay R.G., Lancaster L.D., Olajos M., Goldman S. Dog model to study the effects of pharmacologic agents on the peripheral circulation: effects of milrinone. J. Pharmacol. Exp. Ther. 1987, 240(3):1014-1019.
Lee R.W., Raya T.E., Gay R.G., Olajos M., Goldman S. Beta-2 adrenoceptor control of the venous circulation in intact dogs. J. Pharmacol. Exp. Ther. 1987, 242(3):1138-1143.
Ogilvie R.I., Zborowska-Sluis D. Effect of chronic rapid ventricular pacing on total vascular capacitance. Circulation 1992, 85(4):1524-1530. 10.1161/01.CIR.85.4.1524.
Rothe C.F., Drees J.A. Vascular capacitance and fluid shifts in dogs during prolonged hemorrhagic hypotension. Circ. Res. 1976, 38(5):347-356. 10.1161/01.RES.38.5.347.
Raue A., Kreutz C., Maiwald T., Bachmann J., Schilling M., Klingmüller U., Timmer J. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 2009, 25(15):1923-1929. 10.1093/bioinformatics/btp358.
Ghuysen A., Lambermont B., Kolh P., Tchana-Sato V., Magis D., Gerard P., Mommens V., Janssen N., Desaive T., D'Orio V. Alteration of right ventricular-pulmonary vascular coupling in a porcine model of progressive pressure overloading. Shock 2008, 29(2):197-204.
Lambermont B., Delanaye P., Dogné J.-M., Ghuysen A., Janssen N., Dubois B., Desaive T., Kolh P., D'Orio V., Krzesinski J.-M. Large-pore membrane hemofiltration increases cytokine clearance and improves right ventricular-vascular coupling during endotoxic shock in pigs. Artif. Organs 2006, 30(7):560-564. 10.1111/j.1525-1594.2006.00260.x.
Kass D.A., Maughan W.L., Guo Z.M., Kono A., Sunagawa K., Sagawa K. Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 1987, 76(6):1422-1436.
Zanzinger J., Czachurski J., Seller H. Role of calcium-dependent K+ channels in the regulation of arterial and venous tone by nitric oxide in pigs. Pflügers Archiv. 1996, 432(4):671-677.
Barbier P., Solomon S., Schiller N.B., Glantz S.A. Determinants of forward pulmonary vein flow: an open pericardium pig model. J. Am. Coll. Cardiol. 2000, 35(7):1947-1959.
Burth M., Verghese G.C., Velez-Reyes M. Subset selection for improved parameter estimation in on-line identification of a synchronous generator. IEEE Trans. Power Syst. 1999, 14(1):218-225.
Olufsen M.S., Ottesen J.T. A practical approach to parameter estimation applied to model predicting heart rate regulation. J. Math. Biol. 2013, 67(1):39-68.
Morimont P., Lambermont B., Ghuysen A., Gerard P., Kolh P., Lancellotti P., Tchana-Sato V., Desaive T., D'Orio V. Effective arterial elastance as an index of pulmonary vascular load. Am. J. Physiol. Heart Circ. Physiol. 2008, 294(6):H2736-H2742.
Revie J.A. Model-based Cardiovascular Monitoring in Critical Care for Improved Diagnosis of Cardiac Dysfunction 2012, Ph.D. thesis, University of Canterbury.
Kass D.A., Beyar R., Lankford E., Heard M., Maughan W.L., Sagawa K. Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation 1989, 79(1):167-178.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.