[en] The regional climate model MAR including a coupled snow pack/aeolian snow transport parameterisation is compared with aeolian snow mass fluxes at a fine spatial resolution (5 km horizontally and 2 m vertically) and at a fine temporal resolution (30 min) over 1 month in Antarctica. Numerous feedbacks are taken into account in the MAR including the drag partitioning caused by the roughness elements. Wind speed is correctly simulated with a positive value of the Nash test (0.60 and 0.37) but the wind speeds above 10 m s−1 are underestimated. The aeolian snow transport events are correctly reproduced with a good temporal resolution except for the aeolian snow transport events with a particles' maximum height below 1 m. The simulated threshold friction velocity, calculated without snowfall, is overestimated. The simulated aeolian snow mass fluxes between 0 to 2 m have the same variations but are underestimated compared to the second-generation FlowCapt values and so is the simulated relative humidity at 2 m. This underestimation is not entirely due to the underestimation of the simulated wind speed. The MAR underestimates the aeolian snow quantity that pass through the first two meters by a factor ten compared to the second-generation FlowCapt value (13 990 kg m−1 and 151 509 kg m−1 respectively). It will conduct the MAR, with this parametrisation, to underestimate the effect of the aeolian snow transport on the Antarctic surface mass balance.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Amory, Charles ; Université de Liège > Département de géographie > Climatologie et Topoclimatologie
Trouvillez, A.
Gallée, H.
Favier, V.
Naaim-Bouvet, F.
Genthon, C.
Agosta, Cécile ; Université de Liège > Département de géographie > Climatologie et Topoclimatologie
Piard, L.
Bellot, H.
Language :
English
Title :
Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agosta, C., Favier, V., Genthon, C., Gallée, H., Krinner, G., Lenaerts, J. T. M., and van den Broeke, M. R.: A 40-year accumulation dataset for Adélie Land, Antarctica and its application for model validation, Clim. Dynam., 38, 75-86, doi:10.1007/s00382-011-1103-4, 2012.
Andreas, E. L.: Air-ice drag coefficients in the western weddell sea. 2. A model based on form drag and drifting snow, J. Geophys. Res., 100, 4833-4843, 1995.
Andreas, E. L. and Claffey K. J.:. Air-ice drag coefficients in the western weddell sea. 1. Values deduced from profile measurements, J. Geophys. Res., 100, 4821-4831, 1995.
Bintanja, R.: Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description, Bound.-Layer Meteorol., 95, 343-368, 2000.
Budd, W. F.: The drifting of nonuniform snow particles, in: Studies in Antarctic Meteorology, Vol. 9, 59-70, AGU, Washington DC, 1966.
Budd, W. F., Dingle, W. R. J., and Radok, U.: The Byrd snow drift project outline and basic results, in Studies in Antarctic Meteorology, Vol. 9, edited by: Rubin, M. J., 71-134, American Geophysical Union, Washington DC, 1966.
Cierco, F.-X., Naaim-Bouvet, F., and Bellot, H.: Acoustic sensors for snowdrift measurements: How should they be used for research purposes?, Cold Reg. Sci. Technol., 49, 74-87, doi:10.1016/j.coldregions.2007.01.002, 2007.
Das, I., Bell, R. E., Scambos, T. A., Wolovick, M., Creyts, T. T., Studinger, M., Frearson, N., Nicolas, J. P., Lenaerts, J. T. M., and van den Broeke, M. R.: Influence of persistent wind scour on the surface mass balance of Antarctica, Nat. Geosci., 6, 367-371, 2013.
De Ridder, K. and Gallée, H.: Land Surface-Induced Regional Climate Change in Southern Israel, J. Appl. Meteorol., 37, 1470-1485, doi:10.1175/1520-0450(1998)037〈1470:LSIRCC〉2.0.CO;2, 1998.
Déry, S. J. and Yau, M. K.: Large-scale mass balance effects of blowing snow and surface sublimation, J. Geophys. Res., 107, 4679, doi:10.1029/2001JD001251, 2002.
Duynkerke, P. G.: Application of the E - ∈ Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer, J. Atmos. Sci., 45, 865-880, 1988.
Favier, V., Agosta, C., Genthon, C., Arnaud, L., Trouvillez, A., and Gallée, H.: Modeling the mass and surface heat budgets in a coastal blue ice area of Adélie Land, Antarctica, J. Geophys. Res., 116, F03017, doi:10.1029/2010JF001939, 2011.
Fettweis, X., Gallée, H., Lefebre, F., and Van Ypersele, J.: Greenland Surface Mass Balance simulated by a Regional Climate Model and Comparison with satellite derived data in 1990-1991, Clim. Dynam., 24, 623-640, doi:10.1007/s00382-005-0010-y, 2005.
Frezzotti, M., Gandolfi, S., and Urbini, S.: Snow megadunes in Antarctica: Sedimentary structure and genesis, J. Geophys. Res., 107, 4344, doi:10.1029/2001JD000673, 2002.
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S., Vincent, C., Becagli, S., Gragnani, R., Proposito, M., Severi, M. T. R., Udisti, R., and Fily, M.: New Estimations of Precipitation and Surface Sublimation in East Antarctica from Snow Accumulation Measurements, Cim. Dynam., 23, 803-813, 2004.
Gallée, H.: Simulation of the Mesocyclonic Activity in the Ross Sea, Antarctica, Mon. Weather Rev., 123, 2051-2069, 1995.
Gallée, H.: A simulation of blowing snow over the Antarctic ice sheet, Ann. Glaciol., 26, 203-205, 1998.
Gallée, H. and Gorodetskaya, I. V.: Validation of a limited area model over Dome C, Antarctic Plateau, during winter, Clim. Dynam., 34, 61-72, doi:10.1007/s00382-008-0499-y, 2010.
Gallée, H. and Schayes, G.: Development of a three-dimensional meso-γ primitive equation model: katabatic winds simulation in the area of Terra Nova Bay, Antarctica, Mon. Weather Rev., 122, 671-685, 1994.
Gallée, H., Guyomarc'h, G., and Brun, É.: Impact of snow drift on the antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties, Bound.-Layer Meteorol., 99, 1-19, 2001.
Gallée, H., Peyaud, V., and Goodwin, I.: Simulation of the net snow accumulation along the Wilkes Land transect, Antarctica, with a regional climate model, Ann. Glaciol., 41(January), 1-6, 2005.
Gallée, H., Trouvilliez, A., Agosta, C., Genthon, C., Favier, V., and Naaim-Bouvet, F.: Transport of Snow by the Wind: A Comparison Between Observations in Adélie Land, Antarctica, and Simulations Made with the Regional Climate Model MAR, Bound.-Layer Meteorol., 146, 133-147, doi:10.1007/s10546-012-9764-z, 2013.
Garcia, R.: Mesures de transport de neige par le vent à la station Charcot, La météorologie, 57, 205-213, 1960.
Garratt, J. R.: The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 1992.
Genthon, C., Lardeux, P., and Krinner, G.: The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adélie, Antarctica, J. Glaciol., 53, 635-645, 2007.
Gordon, M., Biswas, S., Taylor, P. A., Hanesiak, J., Albarran-Melzer, M., and Fargey, S.: Measurements of drifting and blowing snow at Iqaluit, Nunavut, Canada during the star project, Atmos.-Ocean, 48, 81-100, doi:10.3137/AO1105.2010, 2010.
Guyomarc'h, G. and Mérindol, L.: Validation of an application for forecasting blowing snow, Ann. Glaciol., 26, 138-143, 1998.
Jackson, B. S. and Carroll, J. J.: Aerodynamic roughness as a function of wind direction over asymmetric surface elements, Bound.-Layer Meteorol., 14, 323-330, 1978.
Jourdain, N. C. and Gallée, H.: Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model, Clim. Dynam., 36, 1067-1081, doi:10.1007/s00382-010-0757-7, 2010.
Kodama, Y., Wendler, G., and Gosink, J.: The effect of blowing snow on katabatic winds in Antarctica, Ann. Glaciol., 6, 59-62, 1985.
Kotlyakov, V. M.: Results of a Study of the Processes of Formation and Structure of the Upper Layer of the Ice Sheet in Eastern Antarctica, in: Symposium on Antarctic Glaciology, 88-99, IAHS Publication, Helsinki, 1961.
Lefebre, F., Fettweis, X., Gallée, H., Van Ypersele, J., Marbaix, P., Greuell, W., and Calanca, P.: Evaluation of a high-resolution regional climate simulation over Greenland, Clim. Dynam., 25, 99-116, doi:10.1007/s00382-005-0005-8, 2005.
Lenaerts, J. T. M., van den Broeke, M. R., Déry, S. J., König-Langlo, G., Ettema, J., and Munneke, P. K.: Modelling snowdrift sublimation on an Antarctic ice shelf, The Cryosphere, 4, 179-190, doi:10.5194/tc-4-179-2010, 2010.
Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E., and Kuipers Munneke, P.: A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling, Geophys. Res. Lett., 39, L0451, doi:10.1029/2011GL050713, 2012a.
Lenaerts, J. T. M., van den Broeke, M. R., Déry, S. J., van Meijgaard, E., van de Berg, W. J., Palm, S. P., and Sanz Rodrigo, J.: Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation, J. Geophys. Res., 117, D05108, doi:10.1029/2011JD016145, 2012b.
Lenaerts, J. T. M., van den Broeke, M. R., Scarchilli, C., and Agosta, C.: Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica, J. Glaciol., 58, 821-829, doi:10.3189/2012JoG12J020, 2012c.
Leonard, K. C., Tremblay, L.-B., Thom, J. E., and MacAyeal, D. R.: Drifting snow threshold measurements near McMurdo station, Antarctica: A sensor comparison study, Cold Reg. Sci. Technol., 70, 71-80, doi:10.1016/j.coldregions.2011.08.001, 2011.
Lorius, C.: Contribution to the knowledge of the Antarctic ice sheet: a synthesis of glaciological measurements in Terre Adélie, J. Glaciol., 4, 79-92, 1962.
Madigan, C. T.: Meteorology. Tabulated and reduced records of the Cape Denison Station, Adélie Land. Australasian Antarctic Expedition 1911-1914 Scientific Reports, Serie B, Vol. 4, 1929.
Mann, G. W., Anderson, P. S., and Mobbs, S. D.: Profile measurements of blowing snow at Halley, Antarctica, J. Geophys. Res., 105, 24491-24508, doi:10.1029/2000JD900247, 2000.
Marticorena, B. and Bergametti, G.: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, J. Geophys. Res., 100, 16415-16430, 1995.
Naaim-Bouvet, F., Bellot, H., and Naaim, M.: Back analysis of drifting-snow measurements over an instrumented mountainous site, Ann. Glaciol., 51, 207-217, doi:10.3189/172756410791386661, 2010.
Naaim-Bouvet, F., Bellot, H., Nishimura, K., Genthon, C., Palerme C., Guyomarc'h, G., and Vionnet, V.: Detection of snow-fall occurrence during blowing snow events using photoelectric sensors, Cold Reg. Sci. Technol., 106-107, 11-21, doi:10.1016/j.coldregions.2014.05.005, 2014.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models Part I - A discussion of principles, J. Hydrol., 10, 282-290, 1970.
Owen, P. R.: Saltation of uniform grains in air, J. Fluid Mech., 20, 225-242, 1964.
Palerme, C., Kay, J. E., Genthon, C., L'Ecuyer, T., Wood, N. B., and Claud, C.: How much snow falls on the Antarctic ice sheet?, The Cryosphere, 8, 1577-1587, doi:10.5194/tc-8-1577-2014, 2014.
Palm, S. P., Yang, Y., Spinhirne, J. D., and Marshak, A.: Satellite remote sensing of blowing snow properties over Antarctica, J. Geophys. Res., 116, D16123, doi:10.1029/2011JD015828, 2011.
Parish, T. R. and Wendler, G.: The katabatic wind regime at Adélie Land, Antarctica, Int. J. Climatol., 11, 97-107, 1991.
Pomeroy, J. W.: A process-based model of snow drifting, J. Glaciol., 13, 237-240, 1989.
Pomeroy, J. W. and Male, D. H.: Steady-state suspension of snow, J. Hydrol., 136, 275-301, doi:10.1016/0022-1694(92)90015-N, 1992.
Prud'homme, A. and Valtat, B.: Les observations météorologiques en Terre Adélie 1950-1952 - Analyse critique, Expéditions polaires françaises, Paris, 1957.
Radok, U.: Snow Drift, J. Glaciol., 19, 123-139, 1977.
Reijmer, C. H., van Meijgaard, E., and van den Broeke, M. R.: Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica, Bound.-Layer Meteorol., 111, 313-337, 2004.
Scarchilli, C., Frezzotti, M., Grigioni, P., De Silvestri, L., Agnoletto, L., and Dolci, S.: Extraordinary blowing snow transport events in East Antarctica, Clim. Dynam., 34, 1195-1206, doi:10.1007/s00382-009-0601-0, 2010.
Smeets, C. J. P. P. and van den Broeke, M. R.: Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland Ice Sheet, Bound.-Layer Meteorol., 128, 315-338, 2008.
Trouvilliez, A., Naaim-Bouvet, F., Genthon, C., Piard, L., Favier, V., Bellot, H., Agosta, C., Palerme, C., Amory, C., and Gallée, H.: A novel experimental study of aeolian snow transport in Adélie Land (Antarctica), Cold Reg. Sci. Technol., 108, 125-138, doi:10.1016/j.coldregions.2014.09.005, 2014.
Trouvilliez, A., Naaim-Bouvet, F., Bellot, H., Genthon, C., and Gallée, H.: Evaluation of Flowcapt acoustic sensor for snowdrift measurements, J. Atmos. Ocean. Tech., in press, 2015.
Wamser, C. and Lykossov, V. N.: On the friction velocity during blowing snow, Contrib. to Atmos. Phys., 68, 85-94, 1995.
Wendler, G.: On the blowing snow in Adélie Land, eastern Antarctica. A contribution to I.A.G.O, in: Glacier fluctuations and climatic change, edited by: Oerlemans, J., 261-279, Reidel, Dordrecht, 1989.
Wendler, G., Stearns, C. R., Dargaud, G., and Parish, T. R.: On the extraordinary katabatic winds of Adélie Land, J. Geophys. Res., 102, 4463-4474, 1997.
Wilkinson, R. H.: A Method for Evaluating Statistical Errors Associated with Logarithmic Velocity Profiles, Geo-Marine Lett., 3, 49-52, 1984.
Xiao, J., Bintanja, R., Déry, S. J., Mann, G. W., and Taylor, P. A.: An intercomparison among four models of blowing snow, Bound. Layer Meteorol., 97, 109-135, 2000.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.