Vicente, Avelino ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Yaguna, Carlos
Language :
English
Title :
Probing the scotogenic model with lepton flavor violating processes
Publication date :
2015
Journal title :
Journal of High Energy Physics
ISSN :
1126-6708
eISSN :
1029-8479
Publisher :
Institute of Physics Publishing (IOP), Bristol, United Kingdom
S. Mihara, J.P. Miller, P. Paradisi and G. Piredda, Charged lepton flavor-violation experiments, Ann. Rev. Nucl. Part. Sci.63 (2013) 531 [INSPIRE].
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev.D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
T. Toma and A. Vicente, Lepton flavor violation in the scotogenic model, JHEP01 (2014) 160 [arXiv:1312.2840] [INSPIRE].
J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μ → eγ and neutrinoless double beta decay, Phys. Lett.B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].
D. Aristizabal Sierra, J. Kubo, D. Restrepo, D. Suematsu and O. Zapata, Radiative seesaw: warm dark matter, collider and lepton flavour violating signals, Phys. Rev.D 79 (2009) 013011 [arXiv:0808.3340] [INSPIRE].
D. Suematsu, T. Toma and T. Yoshida, Reconciliation of CDM abundance and μ → eγ in a radiative seesaw model, Phys. Rev.D 79 (2009) 093004 [arXiv:0903.0287] [INSPIRE].
A. Adulpravitchai, M. Lindner and A. Merle, Confronting flavour symmetries and extended scalar sectors with lepton flavour violation bounds, Phys. Rev.D 80 (2009) 055031 [arXiv:0907.2147] [INSPIRE].
G.B. Gelmini, E. Osoba and S. Palomares-Ruiz, Inert-sterile neutrino: cold or warm dark matter candidate, Phys. Rev.D 81 (2010) 063529 [arXiv:0912.2478] [INSPIRE].
D. Schmidt, T. Schwetz and T. Toma, Direct detection of leptophilic dark matter in a model with radiative neutrino masses, Phys. Rev.D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].
S. Kashiwase and D. Suematsu, Baryon number asymmetry and dark matter in the neutrino mass model with an inert doublet, Phys. Rev.D 86 (2012) 053001 [arXiv:1207.2594] [INSPIRE].
S. Kashiwase and D. Suematsu, Leptogenesis and dark matter detection in a TeV scale neutrino mass model with inverted mass hierarchy, Eur. Phys. J.C 73 (2013) 2484 [arXiv:1301.2087] [INSPIRE].
M. Klasen, C.E. Yaguna, J.D. Ruiz-Alvarez, D. Restrepo and O. Zapata, Scalar dark matter and fermion coannihilations in the radiative seesaw model, JCAP04 (2013) 044 [arXiv:1302.5298] [INSPIRE].
M. Aoki and S. Kanemura, Probing the Majorana nature of TeV-scale radiative seesaw models at collider experiments, Phys. Lett.B 689 (2010) 28 [arXiv:1001.0092] [INSPIRE].
M. Gustafsson, S. Rydbeck, L. Lopez-Honorez and E. Lundstrom, Status of the inert doublet model and the role of multileptons at the LHC, Phys. Rev.D 86 (2012) 075019 [arXiv:1206.6316] [INSPIRE].
S.-Y. Ho and J. Tandean, Probing scotogenic effects in Higgs boson decays, Phys. Rev.D 87 (2013) 095015 [arXiv:1303.5700] [INSPIRE].
A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An updated analysis of inert Higgs doublet model in light of the recent results from LUX, PLANCK, AMS-02 and LHC, JCAP06 (2014) 030 [arXiv:1310.0358] [INSPIRE].
T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, Scalar multiplet dark matter, JHEP07 (2009) 090 [Erratum .05 (2010) 066] [arXiv:0903.4010] [INSPIRE].
J. Racker, Mass bounds for baryogenesis from particle decays and the inert doublet model, JCAP03 (2014) 025 [arXiv:1308.1840] [INSPIRE].
E. Ma, Radiative scaling neutrino mass and warm dark matter, Phys. Lett.B 717 (2012) 235 [arXiv:1206.1812] [INSPIRE].
J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys.B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
D. Aristizabal Sierra and C.E. Yaguna, On the importance of the 1-loop finite corrections to seesaw neutrino masses, JHEP08 (2011) 013 [arXiv:1106.3587] [INSPIRE].
R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev.D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].
L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP02 (2007) 028 [hep-ph/0612275] [INSPIRE].
L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP09 (2010) 046 [arXiv:1003.3125] [INSPIRE].
MEG collaboration, J. Adam et al., New constraint on the existence of the μ+ → e+γ decay, Phys. Rev. Lett.110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
A.M. Baldini et al., MEG upgrade proposal, arXiv:1301.7225 [INSPIRE].
A. Blondel et al., Research proposal for an experiment to search for the decay μ → eee, arXiv:1301.6113 [INSPIRE].
SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ+ → e+e+e−, Nucl. Phys.B 299 (1988) 1 [INSPIRE].
Mu2e collaboration, D. Glenzinski, The Mu2e experiment at Fermilab, AIP Conf. Proc.1222 (2010) 383 [INSPIRE].
DeeMe collaboration, M. Aoki, A new idea for an experimental search for μ-e conversion, PoS(ICHEP 2010)279 [INSPIRE].
DeeMe collaboration, H. Natori, DeeMe experiment — an experimental search for a μ-e conversion reaction at J-PARC MLF, Nucl. Phys. Proc. Suppl.B 248-250 (2014) 52 [INSPIRE].
COMET collaboration, Y.G. Cui et al., Conceptual design report for experimental search for lepton flavor violating μ-e conversion at sensitivity of 10−16with a slow-extracted bunched proton beam (COMET), KEK-2009-10, Tsukuba Japan (2009) [INSPIRE].
COMET collaboration, Y. Kuno, A search for muon-to-electron conversion at J-PARC: the COMET experiment, Prog. Theor. Exp. Phys.2013 (2013) 022C01 [INSPIRE].
PRIME working group collaboration, Search for the μ → e conversion process at an ultimate sensitivity of the order of 10−18with PRISM, http://j-parc.jp/researcher/Hadron/en/pac_0606/pdf/p20-Kuno.pdf, Japan (2006).
LHCb collaboration, Search for the lepton flavour violating decay τ− → μ−μ+μ−, arXiv:1409.8548 [INSPIRE].
BaBar and Belle collaborations, A.J. Bevan et al., The physics of the B factories, Eur. Phys. J.C 74 (2014) 3026 [arXiv:1406.6311] [INSPIRE].
CMS collaboration, Search for lepton flavour violating decays of the Higgs boson, CMS-PAS-HIG-14-005, CERN, Geneva Switzerland (2014).
BaBar collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ± →e±γ and τ± →μ±γ, Phys. Rev. Lett.104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
K. Hayasaka et al., Search for lepton flavor violating τ decays into three leptons with 719 million produced τ+τ−pairs, Phys. Lett.B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].
SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in μ → e conversion on titanium, Phys. Lett.B 317 (1993) 631 [INSPIRE].
SINDRUM II collaboration, W.H. Bertl et al., A search for muon to electron conversion in muonic gold, Eur. Phys. J.C 47 (2006) 337 [INSPIRE].
Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys.73 (2001) 151 [hep-ph/9909265] [INSPIRE].
E. Arganda, M.J. Herrero and A.M. Teixeira, μ-e conversion in nuclei within the CMSSM seesaw: universality versus non-universality, JHEP10 (2007) 104 [arXiv:0707.2955] [INSPIRE].
H.C. Chiang, E. Oset, T.S. Kosmas, A. Faessler and J.D. Vergados, Coherent and incoherent (μ−, e−) conversion in nuclei, Nucl. Phys.A 559 (1993) 526 [INSPIRE].
T.S. Kosmas, S. Kovalenko and I. Schmidt, Nuclear μ− − e−conversion in strange quark sea, Phys. Lett.B 511 (2001) 203 [hep-ph/0102101] [INSPIRE].
F. Capozzi et al., Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev.D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].
A. Goudelis, B. Herrmann and O. Stål, Dark matter in the inert doublet model after the discovery of a Higgs-like boson at the LHC, JHEP09 (2013) 106 [arXiv:1303.3010] [INSPIRE].
A. Pierce and J. Thaler, Natural dark matter from an unnatural Higgs boson and new colored particles at the TeV scale, JHEP08 (2007) 026 [hep-ph/0703056] [INSPIRE].
E. Lundstrom, M. Gustafsson and J. Edsjo, The inert doublet model and LEP II limits, Phys. Rev.D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].
L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
E. Molinaro, C.E. Yaguna and O. Zapata, FIMP realization of the scotogenic model, JCAP07 (2014) 015 [arXiv:1405.1259] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3: a program for calculating dark matter observables, Comput. Phys. Commun.185 (2014) 960 [arXiv:1305.0237] [INSPIRE].
WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl.208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys.571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Sci. Ser.B 59 (1980) 135 [INSPIRE].