In ovo feeding; Myogenesis; Nitric oxide; Post-hatching
Abstract :
[en] Summary: In this study, we tested the hypothesis that in ovo feeding (IOF) of L-arginine (L-Arg) enhances nitric oxide (NO) production, stimulates the process of myogenesis, and regulates post-hatching muscle growth. Different doses of L-Arg were injected into the amnion of chicken embryos at embryonic day (ED) 16. After hatching, the body weight of individual male chickens was recorded weekly for 3 weeks. During in vitro experiments, myoblasts of the pectoralis major (PM) were extracted at ED16 and were incubated in medium containing 0.01 mm L-Arg, 0.05 mm L-Arg, and (or) 0.05 mm L-nitro-arginine-methyl-ester (L-NAME), an inhibitor of nitric oxide synthase (NOS). When 25 mg/kg L-Arg/initial egg weight was injected, no difference was observed in body weight at hatch, but a significant decrease was found during the following 3 weeks compared to that of the non-injected and saline-injected control, and this also affected the growth of muscle mass. L-NAME inhibited gene expression of myogenic differentiation antigen (MyoD), myogenin, NOS, and follistatin, decreased the cell viability, and increased myostatin (MSTN) gene expression. 0.05 mm L-Arg stimulated myogenin gene expression but also depressed muscle cell viability. L-NAME blocked the effect of 0.05 mm L-Arg on myogenin mRNA levels when co-incubated with 0.05 mm L-Arg. L-Arg treatments had no significant influence on NOS mRNA gene expression, but had inhibiting effect on follistatin gene expression, while L-NAME treatments had effects on both. These results suggested that L-Arg stimulated myoblast differentiation, but the limited number of myoblasts would form less myotubes and then less myofibers, while the latter limited the growth of muscle mass. � 2015 Blackwell Verlag GmbH.
Disciplines :
Animal production & animal husbandry
Author, co-author :
Li, Yue
Wang, Y.; Department of Biosystems Division of Livestock-Nutrition-Quality KU Leuven Leuven Belgium
Willems, E.; Department of Biosystems Division of Livestock-Nutrition-Quality KU Leuven Leuven Belgium
Willemsen, H.; Department of Biosystems Division of Livestock-Nutrition-Quality KU Leuven Leuven Belgium
Franssens, L.; Department of Biosystems Division of Livestock-Nutrition-Quality KU Leuven Leuven Belgium
Buyse, J.; Department of Biosystems Division of Livestock-Nutrition-Quality KU Leuven Leuven Belgium
Decuypere, E.; Department of Biosystems Division of Livestock-Nutrition-Quality KU Leuven Leuven Belgium
Everaert, Nadia ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Zootechnie
Language :
English
Title :
In ovo L-arginine supplementation stimulates myoblast differentiation but negatively affects muscle development of broiler chicken after hatching
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Argiles, J. M.; Orpi, M.; Busquets, S.; Lopez-Soriano, F. J., 2012: Myostatin: more than just a regulator of muscle mass. Drug Discovery Today 17, 702-709.
Ashmore, C. R.; Doerr, L., 1971: Comparative aspects of muscle fiber types in different species. Experimental Neurology 31, 408-418.
Benabdallah, B. F.; Bouchentouf, M.; Rousseau, J.; Tremblay, J. P., 2009: Overexpression of follistatin in human myoblasts increases their proliferation and differentiation, and improves the graft success in SCID mice. Cell Transplantation 18, 709-718.
Brack, A. S.; Rando, T. A., 2012: Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10, 504-514.
Buono, R.; Vantaggiato, C.; Pisa, V.; Azzoni, E.; Bassi, M. T.; Brunelli, S.; Sciorati, C.; Clementi, E., 2012: Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP. Stem Cells 30, 197-209.
Careghi, C.; Tona, K.; Onagbesan, O.; Buyse, J.; Decuypere, E.; Bruggeman, V., 2005: The effects of the spread of hatch and interaction with delayed feed access after hatch on broiler performance until seven days of age. Poultry Science 84, 1314-1320.
Chaturvedi, R.; de, S. T.; Coburn, L. A.; Gobert, A. P.; Wilson, K. T., 2012: Arginine and polyamines in Helicobacter pylori-induced immune dysregulation and gastric carcinogenesis. Amino Acids 42, 627-640.
Cossu, G.; Borello, U., 1999: Wnt signaling and the activation of myogenesis in mammals. The EMBO Journal 18, 6867-6872.
Crane, A. M.; Bhattacharya, S. K., 2013: The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods in Molecular Biology 1014, 65-70.
Dong, X. Y.; Jiang, Y. J.; Wang, M. Q.; Wang, Y. M.; Zou, X. T., 2013a: Effects of in ovo feeding of carbohydrates on hatchability, body weight, and energy status in domestic pigeons (Columba livia). Poultry Science 92, 2118-2123.
Dong, X. Y.; Wang, Y. M.; Song, H. H.; Zou, X. T., 2013b: Effects of in ovo injection of carbohydrate solution on small intestine development in domestic pigeons (Columba livia). Journal of Animal Science 91, 3742-3749.
Doumit, M. E.; Merkel, R. A., 1992: Conditions for isolation and culture of porcine myogenic satellite cells. Tissue and Cell 24, 253-262.
Fernandes, J. I.; Murakami, A. E.; Martins, E. N.; Sakamoto, M. I.; Garcia, E. R., 2009: Effect of arginine on the development of the pectoralis muscle and the diameter and the protein:deoxyribonucleic acid rate of its skeletal myofibers in broilers. Poultry Science 88, 1399-1406.
Foye, O. T.; Ferket, P. R.; Uni, Z., 2007: The effects of in ovo feeding arginine, beta-hydroxy-beta-methyl-butyrate, and protein on jejunal digestive and absorptive activity in embryonic and neonatal turkey poults. Poultry Science 86, 2343-2349.
Geyra, A.; Uni, Z.; Sklan, D., 2001: The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. British Journal of Nutrition 86, 53-61.
Grant, A. L.; Helferich, W. G.; Merkel, R. A.; Bergen, W. G., 1990: Effects of phenethanolamines and propranolol on the proliferation of cultured chick breast muscle satellite cells. Journal of Animal Science 68, 652-658.
Grobet, L.; Martin, L. J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Menissier, F.; Massabanda, J.; Fries, R.; Hanset, R.; Georges, M., 1997: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics 17, 71-74.
Halevy, O.; Geyra, A.; Barak, M.; Uni, Z.; Sklan, D., 2000: Early posthatch starvation decreases satellite cell proliferation and skeletal muscle growth in chicks. Journal of Nutrition 130, 858-864.
Halevy, O.; Piestun, Y.; Allouh, M. Z.; Rosser, B. W.; Rinkevich, Y.; Reshef, R.; Rozenboim, I.; Wleklinski-Lee, M.; Yablonka-Reuveni, Z., 2004: Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Developmental Dynamics 231, 489-502.
Ito, N.; Ruegg, U. T.; Kudo, A.; Miyagoe-Suzuki, Y.; Takeda, S., 2013: Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nature Medicine 19, 101-106.
Jochemsen, P.; Jeurissen, S. H., 2002: The localization and uptake of in ovo injected soluble and particulate substances in the chicken. Poultry Science 81, 1811-1817.
Kadam, M. M.; Bhanja, S. K.; Mandal, A. B.; Thakur, R.; Vasan, P.; Bhattacharyya, A.; Tyagi, J. S., 2008: Effect of in ovo threonine supplementation on early growth, immunological responses and digestive enzyme activities in broiler chickens. British Poultry Science 49, 736-741.
Kadam, M. M.; Barekatain, M. R.; Bhanja, S. K.; Iji, P. A., 2013: Prospects of in ovo feeding and nutrient supplementation for poultry: The science and commercial applications - a review. Journal of the Science of Food and Agriculture 15, 3654-3661.
Kim, S. W.; Wu, G., 2004: Dietary arginine supplementation enhances the growth of milk-fed young pigs. Journal of Nutrition 134, 625-630.
Kornasio, R.; Halevy, O.; Kedar, O.; Uni, Z., 2011: Effect of in ovo feeding and its interaction with timing of first feed on glycogen reserves, muscle growth, and body weight. Poultry Science 90, 1467-1477.
Lefaucheur, L., 2010: A second look into fibre typing-relation to meat quality. Meat Science 84, 257-270.
Li, H.; Choudhary, S. K.; Milner, D. J.; Munir, M. I.; Kuisk, I. R.; Capetanaki, Y., 1994: Inhibition of desmin expression blocks myoblast fusion and interferes with the myogenic regulators MyoD and myogenin. Journal of Cell Biology 124, 827-841.
Li, Y.; Yuan, L.; Yang, X.; Ni, Y.; Xia, D.; Barth, S.; Grossmann, R.; Zhao, R. Q., 2007: Effect of early feed restriction on myofibre types and expression of growth-related genes in the gastrocnemius muscle of crossbred broiler chickens. British Journal of Nutrition 98, 310-319.
Livak, K. J.; Schmittgen, T. D., 2001: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
Long, J. H.; Lira, V. A.; Soltow, Q. A.; Betters, J. L.; Sellman, J. E.; Criswell, D. S., 2006: Arginine supplementation induces myoblast fusion via augmentation of nitric oxide production. Journal of Muscle Research and Cell Motility 27, 577-584.
Luchessi, A. D.; Cambiaghi, T. D.; Hirabara, S. M.; Lambertucci, R. H.; Silveira, L. R.; Baptista, I. L.; Moriscot, A. S.; Costa-Neto, C. M.; Curi, R., 2009: Involvement of eukaryotic translation initiation factor 5A (eIF5A) in skeletal muscle stem cell differentiation. Journal of Cellular Physiology 218, 480-489.
Maarsingh, H.; Pera, T.; Meurs, H., 2008: Arginase and pulmonary diseases. Naunyn-Schmiedeberg's Archives of Pharmacology 378, 171-184.
Mahmoud, K. Z.; Edens, F. W., 2012: Breeder age affects small intestine development of broiler chicks with immediate or delayed access to feed. British Poultry Science 53, 32-41.
Mau, M.; Oksbjerg, N.; Rehfeldt, C., 2008: Establishment and conditions for growth and differentiation of a myoblast cell line derived from the semimembranosus muscle of newborn piglets. In Vitro Cellular & Developmental Biology - Animal 44, 1-5.
Messina, G.; Cossu, G., 2009: The origin of embryonic and fetal myoblasts: a role of Pax3 and Pax7. Genes & Development 23, 902-905.
Moran, E. T. Jr; Reinhart, B. S., 1980: Poult yolk sac amount and composition upon placement: effect of breeder age, egg weight, sex, and subsequent change with feeding or fasting. Poultry Science 59, 1521-1528.
Mozdziak, P. E.; Schultz, E.; Cassens, R. G., 1997: Myonuclear accretion is a major determinant of avian skeletal muscle growth. American Journal of Physiology 272, C565-C571.
Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E., 2000: Unloading of juvenile muscle results in a reduced muscle size 9 wk after reloading. Journal of Applied Physiology 88, 158-164.
Nall, J. L.; Wu, G.; Kim, K. H.; Choi, C. W.; Smith, S. B., 2009: Dietary supplementation of L-arginine and conjugated linoleic acid reduces retroperitoneal fat mass and increases lean body mass in rats. Journal of Nutrition 139, 1279-1285.
Oksbjerg, N.; Gondret, F.; Vestergaard, M., 2004: Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domestic Animal Endocrinology 27, 219-240.
Pisconti, A.; Brunelli, S.; Di, P. M.; De, P. C.; Deponti, D.; Baesso, S.; Sartorelli, V.; Cossu, G.; Clementi, E., 2006: Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. Journal of Cell Biology 172, 233-244.
Remignon, H.; Gardahaut, M. F.; Marche, G.; Ricard, F. H., 1995: Selection for rapid growth increases the number and the size of muscle fibres without changing their typing in chickens. Journal of Muscle Research and Cell Motility 16, 95-102.
Samengo, G.; Avik, A.; Fedor, B.; Whittaker, D.; Myung, K. H.; Wehling-Henricks, M.; Tidball, J. G., 2012: Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S-nitrosylation that increase myofibril degradation and sarcopenia. Aging Cell 11, 1036-1045.
Seale, P.; Sabourin, L. A.; Girgis-Gabardo, A.; Mansouri, A.; Gruss, P.; Rudnicki, M. A., 2000: Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777-786.
Stochdale, F. E.; Holtzer, H., 1961: DNA synthesis and myogenesis. Experimental Cell Research 24, 508-520.
Tako, E.; Ferket, P. R.; Uni, Z., 2004: Effects of in ovo feeding of carbohydrates and beta-hydroxy-beta-methylbutyrate on the development of chicken intestine. Poultry Science 83, 2023-2028.
Tang, J. E.; Lysecki, P. J.; Manolakos, J. J.; MacDonald, M. J.; Tarnopolsky, M. A.; Phillips, S. M., 2011: Bolus arginine supplementation affects neither muscle blood flow nor muscle protein synthesis in young men at rest or after resistance exercise. Journal of Nutrition 141, 195-200.
Tang, F. C.; Chan, C. C.; Kuo, P. L., 2014: Contribution of creatine to protein homeostasis in athletes after endurance and sprint running. European Journal of Nutrition 1, 61-71.
Tangara, M.; Chen, W.; Xu, J.; Huang, F. R.; Peng, J., 2010: Effects of in ovo feeding of carbohydrates and arginine on hatchability, body weight, energy metabolism and perinatal growth in duck embryos and neonates. British Poultry Science 51, 602-608.
Ulibarri, J. A.; Mozdziak, P. E.; Schultz, E.; Cook, C.; Best, T. M., 1999: Nitric oxide donors, sodium nitroprusside and S-nitroso-N-acetylpencillamine, stimulate myoblast proliferation in vitro. In Vitro Cellular & Developmental Biology - Animal 35, 215-218.
Uni, Z.; Ferket, P. R.; Tako, E.; Kedar, O., 2005: In ovo feeding improves energy status of late-term chicken embryos. Poultry Science 84, 764-770.
Wei, L. H.; Wu, G.; Morris, S. M. Jr; Ignarro, L. J., 2001: Elevated arginase I expression in rat aortic smooth muscle cells increases cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 98, 9260-9264.
Wu, L. Y.; Fang, Y. J.; Guo, X. Y., 2011: Dietary L-arginine supplementation beneficially regulates body fat deposition of meat-type ducks. British Poultry Science 52, 221-226.
Wylie, L. M.; Robertson, G. W.; Hocking, P. M., 2003: Effects of dietary protein concentration and specific amino acids on body weight, body composition and feather growth in young turkeys. British Poultry Science 44, 75-87.
Xu, P.; Gu, X., 2000: The effects of EGF, TGF-beta and insulin on the growth of rabbit's skeletal muscle satellite cell. Zhonghua Kou Qiang Yi Xue Za Zhi 35, 289-291.
Zhang, Q.; Wang, K.; Zhang, Y.; Meng, J.; Yu, F.; Chen, Y.; Zhu, D., 2010: The myostatin-induced E3 ubiquitin ligase RNF13 negatively regulates the proliferation of chicken myoblasts. FEBS Journal 277, 466-476.
Zhang, G.; Ding, F.; Wang, J.; Dai, G.; Xie, K.; Zhang, L.; Wang, W.; Zhou, S., 2011: Polymorphism in exons of the myostatin gene and its relationship with body weight traits in the Bian chicken. Biochemical Genetics 49, 9-19.
Zhao, L.; Zhang, X.; Kuang, H.; Wu, J.; Guo, Y.; Ma, L., 2013: Effect of TRPV1 channel on the proliferation and apoptosis in asthmatic rat airway smooth muscle cells. Experimental Lung Research 7, 283-294.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.