[en] Zinc and iron are two essential micronutrients for plants. The homeostasis networks of the two metals are intertwined. The FRD3 (FERRIC REDUCTASE DEFECTIVE 3) protein, a member of the MATE family of membrane transporters, is a citrate transporter involved in iron homeostasis and playing a role in zinc tolerance in Arabidopsis. The FRD3 gene displays a complex regulation. Alternative transcript initiation for FRD3 determines two transcripts, which differ in their 5'UTRs and have differential translation efficiency. The two transcripts are selectively regulated under stress conditions: iron and zinc depletion, zinc excess or cadmium presence. We are aiming to determine the FRD3 function in zinc and iron homeostasis in Arabidopsis. We will present data (i) on the functional characterization of the alternative transcripts and their role in metal homeostasis in Arabidopsis and (ii) on the zinc phenotypes of the frd3 mutant.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Scheepers, Maxime ; Université de Liège - ULiège > Form. doct. sc. (bioch., biol. mol. cel., bioinf. - paysage)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.