[en] Bone morphogenetic proteins (BMPs) control many developmental and
physiological processes, including skeleton formation and homeostasis. Previous studies in
zebrafish revealed the crucial importance of proper BMP signaling before 48 h post-fertilization
(hpf) for cartilage formation in the skull. Here, we focus on the involvement of the BMP
pathway between 48 and 96 hpf in bone formation after 96 hpf. Using BMP inhibitors and
the expression of a dominant-negative BMP receptor, we analyze whether the loss of BMP
signaling affects osteoblastogenesis, osteoblast function and bone mineralization. To this
end, we used the transgenic zebrafish line Tg(osterix:mCherry), detection of nitric oxide
(NO) production, and alizarin red staining, respectively. We observed that inhibition of
BMP signaling between 48 and 72 hpf led to a reduction of NO production and bone
mineralization. Osteoblast maturation and chondrogenesis, on the other hand, seemed
unchanged. Osteoblast function and bone formation were less affected when BMP
signaling was inhibited between 72 and 96 hpf. These results suggest that for the onset of
bone formation, proper BMP signaling between 48 and 72 hpf is crucial to ensure
osteoblast function and ossification. Furthermore, detection of NO in developing zebrafish
larvae appears as an early indicator of bone calcification activity.
Research Center/Unit :
AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège Giga-Development and Stem Cells - ULiège CART - Centre Interfacultaire d'Analyse des Résidus en Traces - ULiège
Disciplines :
Genetics & genetic processes
Author, co-author :
Windhausen, Thomas ; Université de Liège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Squifflet, Steeve
Renn, Jörg ; Université de Liège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Muller, Marc ; Université de Liège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
Language :
English
Title :
BMP Signaling Regulates Bone Morphogenesis in Zebrafish through Promoting Osteoblast Function as Assessed by Their Nitric Oxide Production
Schilling, T.F.; Kimmel, C.B. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 1994, 120, 483-494.
Hammond, C.L.; Schulte-Merker, S. Two populations of endochondral osteoblasts with differential sensitivity to hedgehog signalling. Development 2009, 136, 3991-4000.
Flores, M.V.; Lam, E.Y.; Crosier, P.; Crosier, K. A hierarchy of runx transcription factors modulate the onset of chondrogenesis in craniofacial endochondral bones in zebrafish. Dev. Dyn. 2006, 235, 3166-3176.
Spoorendonk, K.M.; Peterson-Maduro, J.; Renn, J.; Trowe, T.; Kranenbarg, S.; Winkler, C.; Schulte-Merker, S. Retinoic acid and cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 2008, 135, 3765-3774.
Gavaia, P.J.; Simes, D.C.; Ortiz-Delgado, J.B.; Viegas, C.S.; Pinto, J.P.; Kelsh, R.N.; Sarasquete, M.C.; Cancela, M.L. Osteocalcin and matrix gla protein in zebrafish (Danio rerio) and senegal sole (Solea senegalensis): Comparative gene and protein expression during larval development through adulthood. Gene Expr. Patterns 2006, 6, 637-652.
Apschner, A.; Schulte-Merker, S.; Witten, P.E. Not all bones are created equal - Using zebrafish and other teleost species in osteogenesis research. Methods Cell Biol. 2011, 105, 239-255.
Vanoevelen, J.; Janssens, A.; Huitema, L.F.; Hammond, C.L.; Metz, J.R.; Flik, G.; Voets, T.; Schulte-Merker, S. Trpv5/6 is vital for epithelial calcium uptake and bone formation. FASEB J. 2011, 25, 3197-3207.
Huitema, L.F.; Apschner, A.; Logister, I.; Spoorendonk, K.M.; Bussmann, J.; Hammond, C.L.; Schulte-Merker, S. Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc. Natl. Acad. Sci. USA 2012, 109, 21372-21377.
Apschner, A.; Huitema, L.F.; Ponsioen, B.; Peterson-Maduro, J.; Schulte-Merker, S. Zebrafish enpp1 mutants exhibit pathological mineralization, mimicking features of generalized arterial calcification of infancy (GACI) and pseudoxanthoma elasticum (PXE). Dis. Models Mech. 2014, 7, 811-822.
Poulain, M.; Furthauer, M.; Thisse, B.; Thisse, C.; Lepage, T. Zebrafish endoderm formation is regulated by combinatorial nodal, fgf and bmp signalling. Development 2006, 133, 2189-2200.
Nie, X.; Luukko, K.; Kettunen, P. Bmp signalling in craniofacial development. Int. J. Dev. Biol. 2006, 50, 511-521.
Massague, J.; Gomis, R.R. The logic of TGFβ signaling. FEBS Lett. 2006, 580, 2811-2820.
Dudas, M.; Sridurongrit, S.; Nagy, A.; Okazaki, K.; Kaartinen, V. Craniofacial defects in mice lacking BMP type i receptor Alk2 in neural crest cells. Mech. Dev. 2004, 121, 173-182.
Ko, S.O.; Chung, I.H.; Xu, X.; Oka, S.; Zhao, H.; Cho, E.S.; Deng, C.; Chai, Y. Smad4 is required to regulate the fate of cranial neural crest cells. Dev. Biol. 2007, 312, 435-447.
Lee, M.H.; Kim, Y.J.; Kim, H.J.; Park, H.D.; Kang, A.R.; Kyung, H.M.; Sung, J.H.; Wozney, J.M.; Kim, H.J.; Ryoo, H.M. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-β1 opposes the Bmp-2-induced osteoblast differentiation by suppression of Dlx5 expression. J. Biol. Chem. 2003, 278, 34387-34394.
Lee, M.H.; Kwon, T.G.; Park, H.S.; Wozney, J.M.; Ryoo, H.M. Bmp-2-induced osterix expression is mediated by dlx5 but is independent of runx2. Biochem. Biophys. Res. Commun. 2003, 309, 689-694.
Asharani, P.V.; Keupp, K.; Semler, O.; Wang, W.; Li, Y.; Thiele, H.; Yigit, G.; Pohl, E.; Becker, J.; Frommolt, P.; et al. Attenuated bmp1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am. J. Hum. Genet. 2012, 90, 661-674.
Holzschuh, J.; Wada, N.; Wada, C.; Schaffer, A.; Javidan, Y.; Tallafuss, A.; Bally-Cuif, L.; Schilling, T.F. Requirements for endoderm and bmp signaling in sensory neurogenesis in zebrafish. Development 2005, 132, 3731-3742.
Martinez-Barbera, J.P.; Toresson, H.; Da Rocha, S.; Krauss, S. Cloning and expression of three members of the zebrafish bmp family: Bmp2a, bmp2b and bmp4. Gene 1997, 198, 53-59.
Wilson, J.; Tucker, A.S. Fgf and bmp signals repress the expression of bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint. Dev. Biol. 2004, 266, 138-150.
Alexander, C.; Zuniga, E.; Blitz, I.L.; Wada, N.; Le Pabic, P.; Javidan, Y.; Zhang, T.; Cho, K.W.; Crump, J.G.; Schilling, T.F. Combinatorial roles for bmps and endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 2011, 138, 5135-5146.
Hao, J.; Daleo, M.A.; Murphy, C.K.; Yu, P.B.; Ho, J.N.; Hu, J.; Peterson, R.T.; Hatzopoulos, A.K.; Hong, C.C. Dorsomorphin, a selective small molecule inhibitor of bmp signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS ONE 2008, 3, e2904.
Boergermann, J.H.; Kopf, J.; Yu, P.B.; Knaus, P. Dorsomorphin and ldn-193189 inhibit bmp-mediated smad, p38 and akt signalling in c2c12 cells. Int. J. Biochem. Cell Biol. 2010, 42, 1802-1807.
Hao, J.; Ho, J.N.; Lewis, J.A.; Karim, K.A.; Daniels, R.N.; Gentry, P.R.; Hopkins, C.R.; Lindsley, C.W.; Hong, C.C. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective vegf and bmp inhibitors. ACS Chem. Biol. 2010, 5, 245-253.
Sanvitale, C.E.; Kerr, G.; Chaikuad, A.; Ramel, M.C.; Mohedas, A.H.; Reichert, S.; Wang, Y.; Triffitt, J.T.; Cuny, G.D.; Yu, P.B.; et al. A new class of small molecule inhibitor of bmp signaling. PLoS ONE 2013, 8, e62721.
Renn, J.; Pruvot, B.; Muller, M. Detection of nitric oxide by diaminofluorescein visualizes the skeleton in living zebrafish. J. Appl. Ichthyol. 2014, 30, 701-706.
Renn, J.; Winkler, C. Osterix-mcherry transgenic medaka for in vivo imaging of bone formation. Dev. Dyn. 2009, 238, 241-248.
Nakashima, K.; Zhou, X.; Kunkel, G.; Zhang, Z.; Deng, J.M.; Behringer, R.R.; de Crombrugghe, B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002, 108, 17-29.
Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014, 1, 87-105.
Chen, D.; Zhao, M.; Mundy, G.R. Bone morphogenetic proteins. Growth Factors 2004, 22, 233-241.
Schilling, T.F.; Concordet, J.P.; Ingham, P.W. Regulation of left-right asymmetries in the zebrafish by shh and bmp4. Dev. Biol. 1999, 210, 277-287.
Wan, M.; Cao, X. Bmp signaling in skeletal development. Biochem. Biophys. Res. Commun. 2005, 328, 651-657.
Bonilla-Claudio, M.; Wang, J.; Bai, Y.; Klysik, E.; Selever, J.; Martin, J.F. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development 2012, 139, 709-719.
Das, A.; Crump, J.G. Bmps and id2a act upstream of twist1 to restrict ectomesenchyme potential of the cranial neural crest. PLoS Genet. 2012, 8, e1002710.
Zuniga, E.; Rippen, M.; Alexander, C.; Schilling, T.F.; Crump, J.G. Gremlin 2 regulates distinct roles of bmp and endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development 2011, 138, 5147-5156.
Dalcq, J.; Pasque, V.; Ghaye, A.; Larbuisson, A.; Motte, P.; Martial, J.A.; Muller, M. Runx3, egr1 and sox9b form a regulatory cascade required to modulate bmp-signaling during cranial cartilage development in zebrafish. PLoS ONE 2012, 7, e50140.
Pyati, U.J.; Webb, A.E.; Kimelman, D. Transgenic zebrafish reveal stage-specific roles for bmp signaling in ventral and posterior mesoderm development. Development 2005, 132, 2333-2343.
Swartz, M.E.; Sheehan-Rooney, K.; Dixon, M.J.; Eberhart, J.K. Examination of a palatogenic gene program in zebrafish. Dev. Dyn. 2011, 240, 2204-2220.
Cheah, F.S.; Winkler, C.; Jabs, E.W.; Chong, S.S. TGFβ3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest. Mech. Dev. 2010, 127, 329-344.
Evans, D.M.; Ralston, S.H. Nitric oxide and bone. J. Bone Miner. Res. 1996, 11, 300-305.
Tsukahara, H.; Miura, M.; Tsuchida, S.; Hata, I.; Hata, K.; Yamamoto, K.; Ishii, Y.; Muramatsu, I.; Sudo, M. Effect of nitric oxide synthase inhibitors on bone metabolism in growing rats. Am. J. Physiol. 1996, 270, E840-E845.
Turner, C.H.; Owan, I.; Jacob, D.S.; McClintock, R.; Peacock, M. Effects of nitric oxide synthase inhibitors on bone formation in rats. Bone 1997, 21, 487-490.
Aguirre, J.; Buttery, L.; O'Shaughnessy, M.; Afzal, F.; Fernandez de Marticorena, I.; Hukkanen, M.; Huang, P.; MacIntyre, I.; Polak, J. Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am. J. Pathol. 2001, 158, 247-257.
Armour, K.E.; Armour, K.J.; Gallagher, M.E.; Godecke, A.; Helfrich, M.H.; Reid, D.M.; Ralston, S.H. Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology 2001, 142, 760-766.
Ralston, S.H.; Grabowski, P.S. Mechanisms of cytokine induced bone resorption: Role of nitric oxide, cyclic guanosine monophosphate, and prostaglandins. Bone 1996, 19, 29-33.
Saura, M.; Tarin, C.; Zaragoza, C. Recent insights into the implication of nitric oxide in osteoblast differentiation and proliferation during bone development. Sci. World J. 2010, 10, 624-632.
Bacabac, R.G.; Smit, T.H.; Mullender, M.G.; Dijcks, S.J.; Van Loon, J.J.; Klein-Nulend, J. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Commun. 2004, 315, 823-829.
Bakker, A.D.; Soejima, K.; Klein-Nulend, J.; Burger, E.H. The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J. Biomech. 2001, 34, 671-677.
Pitsillides, A.A.; Rawlinson, S.C.; Suswillo, R.F.; Bourrin, S.; Zaman, G.; Lanyon, L.E. Mechanical strain-induced no production by bone cells: A possible role in adaptive bone (re)modeling? FASEB J. 1995, 9, 1614-1622.
Rangaswami, H.; Schwappacher, R.; Marathe, N.; Zhuang, S.; Casteel, D.E.; Haas, B.; Chen, Y.; Pfeifer, A.; Kato, H.; Shattil, S.; et al. Cyclic gmp and protein kinase g control a src-containing mechanosome in osteoblasts. Sci. Signal. 2010, 3, ra91.
Rangaswami, H.; Schwappacher, R.; Tran, T.; Chan, G.C.; Zhuang, S.; Boss, G.R.; Pilz, R.B. Protein kinase g and focal adhesion kinase converge on Src/Akt/β-catenin signaling module in osteoblast mechanotransduction. J. Biol. Chem. 2012, 287, 21509-21519.
Ding, H.; Keller, K.C.; Martinez, I.K.; Geransar, R.M.; zur Nieden, K.O.; Nishikawa, S.G.; Rancourt, D.E.; zur Nieden, N.I. No-β-catenin crosstalk modulates primitive streak formation prior to embryonic stem cell osteogenic differentiation. J. Cell Sci. 2012, 125, 5564-5577.
Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253-310.
Walker, M.B.; Kimmel, C.B. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech. Histochem. 2007, 82, 23-28.
Lepiller, S.; Laurens, V.; Bouchot, A.; Herbomel, P.; Solary, E.; Chluba, J. Imaging of nitric oxide in a living vertebrate using a diamino-fluorescein probe. Free Radic Biol. Med. 2007, 43, 619-627.
Hauptmann, G.; Gerster, T. Multicolor whole-mount in situ hybridization. Methods Mol. Biol. 2000, 137, 139-148.
Yan, Y.L.; Miller, C.T.; Nissen, R.M.; Singer, A.; Liu, D.; Kirn, A.; Draper, B.; Willoughby, J.; Morcos, P.A.; Amsterdam, A.; et al. A zebrafish sox9 gene required for cartilage morphogenesis. Development 2002, 129, 5065-5079.
ImageJ: Image Processing and Analysis in Java. Natioanl Institutes of Health, Bethesda, MD, USA. Available online: http://imagej.nih.gov/ (accessed on 20 April 2015).