[en] Non-Boolean computations implementing operations on multi-valued variables beyond base 2 allow enhanced computational complexity. We introduce DNA as a functional material for ternary computing, and in particular demonstrate the use of three-valued oligonucleotide inputs to construct a 3 [times] 3 multiplication table. The system consists of two three-valued inputs of -1; 0; +1 and a fluorophore/quencher functional hairpin acting as computational and reporter module. The interaction of the computational hairpin module with the different values of the inputs yields a 3 [times] 3 multiplication matrix consisting of nine nanostructures that are read out by three distinct fluorescence intensities. By combining three different hairpin computational modules, each modified with a different fluorophore/quencher pair, and using different sets of inputs, the parallel operation of three multiplication tables is demonstrated.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Orbach, Ron
Lilienthal, Sivan
Klein, Michael
Levine, Raphaël David
Remacle, Françoise ; Université de Liège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Willner, Itamar
Language :
English
Title :
Ternary DNA computing using 3 x 3 multiplication matrices
Publication date :
2015
Journal title :
Chemical Science
ISSN :
2041-6520
eISSN :
2041-6539
Publisher :
Royal Society of Chemistry, Cambridge, United Kingdom
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
(a) D. Y. Zhang and E. Winfree, J. Am. Chem. Soc., 2009, 131, 17303-17314;
(b) D. Y. Zhang and G. Seelig, Nat. Chem., 2011, 3, 103-113;
(c) F. Wang, C. H. Lu and I. Willner, Chem. Rev., 2014, 114, 2881-2941;
(d) F. Wang, X. Liu and I. Willner, Angew. Chem., Int. Ed., 2014, in press.
O. I. Wilner and I. Willner, Chem. Rev., 2012, 112, 2528-2556.
(a) J. Bath and A. J. Turberfield, Nat. Nanotechnol., 2007, 2, 275-284;
(b) Y. Krishnan and F. C. Simmel, Angew. Chem., Int. Ed., 2011, 50, 3124-3156;
(c) F. C. Simmel and W. U. Dittmer, Small, 2005, 1, 284-299.
(a) Y. Benenson, B. Gil, U. Ben-Dor, R. Adar and E. Shapiro, Nature, 2004, 429, 423-429;
(b) G. Seelig, D. Soloveichik, D. Y. Zhang and E. Winfree, Science, 2006, 314, 1585-1589;
(c) H. Lederman, J. Macdonald, D. Stefanovic and M. N. Stojanovic, Biochemistry, 2006, 45, 1194-1199;
(d) C. W. Brown, M. R. Lakin, E. K. Horwitz, M. L. Fanning, H. E. West, D. Stefanovic and S. W. Graves, Angew. Chem., Int. Ed., 2014, 53, 7183-7187;
(e) R. Orbach, F. Remacle, R. D. Levine and I. Willner, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 21228-21233.
(a) M. N. Stojanovic, S. Semova, D. Kolpashchikov, J. Macdonald, C. Morgan and D. Stefanovic, J. Am. Chem. Soc., 2005, 127, 6914-6915;
(b) M. N. Stojanovic, Prog. Nucleic Acid Res. Mol. Biol., 2008, 82, 199-217;
(c) A. Saghatelian, N. H. Völcker, K. M. Guckian, V. S. Lin and M. R. Ghadiri, J. Am. Chem. Soc., 2003, 125, 346-347;
(d) R. Orbach, L. Mostinski, F. Wang and I. Willner, Chem.-Eur. J., 2012, 18, 14689-14694;
(e) A. J. Genot, J. Bath and A. J. Turber field, J. Am. Chem. Soc., 2011, 133, 20080-20083;
(f) T. Li, L. Zhang, J. Ai, S. Dong and E. Wang, ACS Nano, 2011, 5, 6334-6338.
(a) Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh and E. Shapiro, Nature, 2001, 414, 430-434;
(b) M. N. Stojanovic and D. Stefanovic, Nat. Biotechnol., 2003, 21, 1069-1074.
(a) A. J. Genot, J. Bath and A. J. Turberfield, J. Am. Chem. Soc., 2011, 133, 20080-20083;
(b) L. Qian, E. Winfree and J. Bruck, Nature, 2011, 475, 368-372.
(a) L. Qian and E. Winfree, Science, 2011, 332, 1196-1201;
(b) J. Elbaz, O. Lioubashevski, F. Wang, F. Remacle, R. D. Levine and I. Willner, Nat. Nanotechnol., 2010, 5, 417-422.
L. Qian, E. Winfree and J. Bruck, Nature, 2011, 475, 368-372.
(a) R. Orbach, F. Remacle, R. D. Levine and I. Willner, Chem. Sci., 2014, 5, 1074-1081;
(b) J. Elbaz, F. Wang, F. Remacle and I. Willner, Nano Lett., 2012, 12, 6049-6054;
(c) R. Orbach, F. Wang, O. Lioubashevski, R. D. Levine, F. Remacle and I. Willner, Chem. Sci., 2014, 5, 3381-3387.
S. D. Soloveichik, D. Y. Zhang and E. Winfree, Science, 2006, 314, 1585-1588.
(a) S. Hurst, IEEE Trans. Electron. Comput., 1984, C-33, 1160-1178;
(b) B. Hayes, Am. Sci., 2001, 89, 490-494.
(a) S. Stockinger and O. Trapp, Chem. Sci., 2014, 5, 2677-2682;
(b) V. F. Pais, M. Lineros, R. López-Rodríguez, H. S. El-Sheshtawy, R. Fernández, J. M. Lassaletta, A. Ros and U. Pischel, J. Org. Chem., 2013, 78, 7949-7961;
(c) G. de Ruiter, L. Motiei, J. Choudhury, N. Oded and M. E. van der Boom, Angew. Chem., Int. Ed., 2010, 49, 4780-4783;
(d) R. Ferreira, P. Remón and U. Pischel, J. Phys. Chem. C, 2009, 113, 5805-5811;
(e) I. L. Bajec, N. Zimic and M. Mraz, Nanotechnology, 2005, 17, 1937-1942.
(a) I. Medalsy, M. Klein, A. Heyman, O. Shoseyov, F. Remacle, R. D. Levine and D. Porath, Nat. Nanotechnol., 2010, 5, 451-457;
(b) M. Klein, S. R. Rogge, F. Remacle and R. D. Levine, Nano Lett., 2007, 7, 2795-2799.
J. A. Mol, J. van der Heijden, J. Verduijn, M. Klein, F. Remacle and S. Rogge, Appl. Phys. Lett., 2011, 99, 263109.
A. J. Genot, J. Bath and A. J. Turberfield, Angew. Chem., Int. Ed., 2013, 52, 1189-1192.
(a) R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree and N. A. Pierce, SIAM Rev., 2007, 49, 65-88;
(b) J. N. Zadeh, B. R. Wolfe and N. A. Pierce, J. Comput. Chem., 2011, 32, 439-452.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.