Article (Scientific journals)
Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties
Claudio, T.; Stein, N.; Stroppa, D. G. et al.
2014In Physical Chemistry Chemical Physics, 16 (47), p. 25701-25709
Peer Reviewed verified by ORBi
 

Files


Full Text
088_2014_Claudio_nanoSi_PCCP.pdf
Publisher postprint (2.47 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ≈ 0.57 at 973°C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators. © the Owner Societies 2014.
Disciplines :
Physics
Author, co-author :
Claudio, T.;  Jülich Centre for Neutron Science JCNS, Peter Grünberg Institut PGI, Forschungszentrum Jülich GmbH, Jülich, Germany, Faculté des Sciences, Université de Liège, Liège, Belgium
Stein, N.;  Faculty of Engineering, Center for Nano-integration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
Stroppa, D. G.;  Peter Grünberg Institut PGI-5, Forschungszentrum Jülich GmbH, Jülich, Germany
Klobes, B.;  Jülich Centre for Neutron Science JCNS, Peter Grünberg Institut PGI, Forschungszentrum Jülich GmbH, Jülich, Germany
Koza, M. M.;  Institut Laue Langevin, 6 rue Jules Horowitz B.P. 156, Grenoble, France
Kudejova, P.;  Technische Universitt München, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstr. 1, Garching, Germany
Petermann, N.;  Faculty of Engineering, Center for Nano-integration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
Wiggers, H.;  Faculty of Engineering, Center for Nano-integration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
Schierning, G.;  Faculty of Engineering, Center for Nano-integration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg, Germany
Hermann, Raphaël ;  Université de Liège > Département de chimie (sciences) > Département de chimie (sciences)
Language :
English
Title :
Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties
Publication date :
2014
Journal title :
Physical Chemistry Chemical Physics
ISSN :
1463-9076
eISSN :
1463-9084
Publisher :
Royal Society of Chemistry
Volume :
16
Issue :
47
Pages :
25701-25709
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
DFG - Deutsche Forschungsgemeinschaft [DE]
Available on ORBi :
since 02 June 2015

Statistics


Number of views
45 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
52
Scopus citations®
without self-citations
46
OpenCitations
 
44

Bibliography


Similar publications



Contact ORBi