Unpublished conference/Abstract (Scientific congresses and symposiums)
About the Regularity of Cantor's Bijection
Simons, Laurent; Nicolay, Samuel
2015Automatic Sequences 2015
 

Files


Full Text
AutSeq2015_Beamer.pdf
Publisher postprint (560.94 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Cantor; Hölder exponent; Continued Fraction
Abstract :
[en] In 1878, Cantor proved that there exists a one-to-one correspondence between the points of the unit line segment [0,1] and the points of the unit square [0,1]². Since this application is defined via continued fractions, it is very hard to have any intuition about its smoothness. In this talk, we explore the regularity and the fractal nature of Cantor's bijection, using some notions concerning the metric theory and the ergodic theory of continued fractions. This talk is based on a joint work with S. Nicolay.
Disciplines :
Mathematics
Author, co-author :
Simons, Laurent ;  Université de Liège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Nicolay, Samuel  ;  Université de Liège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
About the Regularity of Cantor's Bijection
Alternative titles :
[fr] A propos de la régularité de la bijection de Cantor
Publication date :
25 May 2015
Event name :
Automatic Sequences 2015
Event organizer :
Michel Rigo, Eric Rowland
Event place :
Liège, Belgium
Event date :
du 25 mai 2015 au 29 mai 2015
Audience :
International
Available on ORBi :
since 01 June 2015

Statistics


Number of views
82 (5 by ULiège)
Number of downloads
16 (1 by ULiège)

Bibliography


Similar publications



Contact ORBi