Magnetic susceptibility application: A window onto ancient environments and climatic variations: Foreword
Da Silva, Anne-Christine; Whalen; Hladilet al.
2015 • In Da Silva, Anne-Christine; Whalen; Hladilet al. (Eds.) Magnetic Susceptibility Application: A Window onto Ancient Environments and Climatic Variations
Alekseev, A. O., Kabanov, P. B., Alekseeva, T. V. & Kalinin, P. 2015. Magnetic susceptibility and geochemical characterization of an upper Mississippian cyclothemic section Polotnyanyi Zavod, (Moscow Basin, Russia). In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online January 26, 2015, http://doi.org/10.1144/SP414.1
Amin, B. S., Likhite, S. D., Radhakrishnamurty, C. & Somayajulu, B. L. K. 1972. Susceptibility stratigraphy and paleomagnetism of some deep Pacific Ocean cores. Deep-Sea Research and Oceanographic Abstracts, 19, 249-252.
Bábek, O., Kalvoda, J., Aretz, M., Cossey, P. J., Devuyst, F. X., Herbig, H. G. & Sevastopulo, G. 2010. The correlation potential of magnetic susceptiblility and outcrop Gamma-Ray logs at Tournaisian-Viséan boundary sections in Western Europe. In: da Silva, A. C. & Boulvain, F. (eds) Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geologica Belgica, Brussels, 13, 291-308.
Bábek, O., Kalvoda, J., Cossey, P., Šimíček, D., Devuyst, F.-X. & Hargreaves, S. 2013. Facies and petrophysical signature of the Tournaisian/Viséan (Lower Carboniferous) sea-level cycle in carbonate ramp to basinal settings of the Wales-Brabant massif, British Isles. Sedimentary Geology, 284-285, 197-213.
Blumentritt, D. J. & Lascu, I. 2015. A comparison of magnetic susceptibility measurement techniques and ferrimagnetic component analysis from recent sediments in Lake Pepin (USA). In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online November 19, 2014, http://doi.org/10.1144/SP414.6
Boulvain, F., Da Silva, A. C., Mabille, C., Hadil, J., Gersl, M., Koptikova, L. & Schnabl, P. 2010. Magnetic susceptibility correlation of km-thick Eifelian-Frasnian sections (Ardenne-Moravian karst). In: da Silva, A. C. & Boulvain, F. (eds) Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geologica Belgica, 13, 309-318.
Burton, K. W. 2006. Global weathering variations inferred from marine radiogenic isotope records. Journal of Geochemical Exploration, 88, 262-265.
Burton, K. W. & Vance, D. 2000. Glacial-interglacial variations in the neodymium isotope composition of seawater in the Bay of Bengal recorded by planktonic foraminifera. Earth and Planetary Science Letters, 176, 425-441.
Calvert, S. E. & Pedersen, T. F. 2007. Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. In: Claude, H. M. & Anne De, V. (eds) Developments in Marine Geology. Elsevier, Oxford, 1, 567-644.
Casier, J. G., Devleeschouwer, X., Petitclerc, E. & Préat, A. 2011. Ostracods, rock facies and magnetic susceptibility of the Hanonet Formation/Trois-Fontaines Formation boundary interval (Early Givetian) at the Mont d'Haurs (Givet, France). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, 81, 63-96.
Chadimova, L., Vacek, F., Sobien, K., Slavik, L. & Hladil, J. 2015. Petrophysical record of the Late Silurian shallow-water carbonate facies across the Lau Event (Prague Synform, Czech Republic) and dynamic time warping alignment of the magnetic susceptibility logs. In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online June 15, 2015, http://doi.org/10.1144/SP414.14
Channel, J. E. T. & McCabe, C. 1994. Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestones. Journal of Geophysical Research, 99, 4613-4623.
Crick, R. E., Ellwood, B. B., El Hassani, A., Feist, R. & Hladil, J. 1997. Magnetosusceptibility event and cyclostratigraphy (MSEC) of the Eifelian-Givetian GSSP and associated boudary sequences in north Africa and Europe. Episodes, 20, 167-175.
Crick, R. E., Ellwood, B. B., Hladil, J., El Hassani, A., Hrouda, F. & Chlupac, I. 2001. Magnetostratigraphy susceptibility of the Pridolian-Lochkovian (Silurian-Devonian) GSSP (Klonk, Czech Republic) and coeval sequence in Anti-Atlas Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 73-100.
Da Silva, A. C. & Boulvain, F. 2002. Sedimentology, magnetic susceptibility and isotopes of a Middle Frasnian Carbonate platform: Tailfer section, Belgium. Facies, 46, 89-102.
Da Silva, A. C. & Boulvain, F. 2003. Sedimentology, magnetic susceptibility and correlations of Middle Frasnian platform limestone (Tailfer and Aywaille sections, Belgium). Geologica Belgica, 6, 81-96.
Da Silva, A. C. & Boulvain, F. 2006. Upper Devonian carbonate platform correlations and sea level variations recorded in magnetic susceptibility. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 373-388.
Da Silva, A. C., Mabille, C. & Boulvain, F. 2009a. Influence of sedimentary setting on the use of magnetic susceptibility: examples from the Devonian of Belgium. Sedimentology, 56, 1292-1306.
Da Silva, A. C., Potma, K., Weissenberger, J. A. W., Whalen, M. T., Mabille, C. & Boulvain, F. 2009b. Magnetic susceptibility evolution and sedimentary environments on carbonate platform sediments and atolls, comparison of the Frasnian from Belgium and from Alberta. Sedimentary Geology, 214, 3-18.
Da Silva, A. C., Yans, J. & Boulvain, F. 2010. Early-Middle Frasnian (Early Late Devonian) sedimentology and magnetic susceptibiliy of the Ardenne area (Belgium): identification of severe and rapid sea level fluctuations. In: da Silva, A. C. & Boulvain, F. (eds) Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geologica Belgica, Brussels, 13, 319-332.
Da Silva, A. C., Dekkers, M. J., Mabille, C. & Boulvain, F. 2012. Magnetic signal an its relationship with paleoenvironments and diagenesis-examples from the Devonian carbonates of Belgium. Studia Geophysica & Geodaedica, 56, 677-704.
Da Silva, A. C., De Vleeschouwer, D. 2013. Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks-merits and pitfalls: examples from the Devonian in Belgium. Review paper. Marine and Petroleum Geology, 46, 173-189.
Da Silva, A. C., Whalen, M. T. 2014. Application of magnetic susceptibility as a paleoclimatic proxy on Paleozoic sedimentary rocks and characterization of the magnetic signal-IGCP-580 projects and events. Episodes, 37, 87-95.
Day, R., Fuller, M. & Schmidt, V. A. 1977. Hysteresis propreties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13, 260-267.
Dearing, J. A., Hay, K. L., Baban, S. M. J., Huddleston, A. S., Wellington, E. M. H. & Loveland, P. J. 1996. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International, 127, 728-734.
Dechamps, S., Boulvain, F. & Da Silva, A. C. 2015. Magnetic susceptibility and facies relationship in Bajocian-Bathonian carbonates from the Azé caves, southeastern Paris Basin, France. In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online March 23, 2015, http://doi.org/10.1144/SP414.11
De Vleeschouwer, D., Da Silva, A. C., Boulvain, F., Crucifix, M. & Claeys, P. 2012a. Precessional and half-precessional climate forcing of Mid-Devonian monsoon-like dynamics. Climate of the Past, 7, 1427-1455.
De Vleeschouwer, D., Whalen, M. T., Day, J. E. & Claeys, P. 2012b. Cyclostratigraphic calibration of the Frasnian (Late Devonian) time-scale (Western Alberta, Canada). Geological Society of America Bulletin, 124, 928-942.
De Vleeschouwer, D., Rakocinski, M., Racki, G., Bond, D. P. G., Sobien, K. & Claeys, P. 2013. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth and Planetary Science Letters, 365, 25-37.
De Vleeschouwer, D., Boulvain, F., Da Silva, A. C., Pas, D., Labaye, C. & Claeys, P. 2015. astronomical interpretation of the magnetic signal signal of the Givetian sections in the Dinant Synclinorium (La Couvinoise, Monts de Baileux, Fromelennes-Flohimont and La Thure). In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online November 21, 2014, http://doi.org/10.1144/SP414.3
Devleeschouwer, X., Petitclerc, E., Spassov, S. & Préat, A. 2010. The Givetian-Frasnian boundary at Nismes parastratotype (Belgium): the magnetic susceptibility signal controlled by ferromagnetic minerals. In: da Silva, A. C. & Boulvain, F. (eds) Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geologica Belgica, Brussels, 13, 351-366.
Devleeschouwer, X., Riquier, L., Babek, O., de Vleeshouwer, D., Petitclerc, E., Sterckx, S. & Spassov, S. 2015. Magnetization carriers of grey to red deep-water limestones in the GSSP of the Givetian-Frasnian boundary (Puech de la Suque, France): signals influenced by moderate diagenetic overprinting. In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online June 17, 2015, http://doi.org/10.1144/SP414.15
Dopieralska, J., Belka, Z. & Haack, U. 2006. Geochemical decoupling of water masses in the Variscan oceanic system during Late Devonian times. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 108-119.
Dunlop, D. J. 2002. Theory and application of the Day plot (Mrs/Ms v. Hcr/Hc)-1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 107, 1-22.
Egli, R. 2003. Analysis of the field dependence of remanent magnetization curves. Journal of Geophysical Research, 108, B2, 2081, http://doi.org/10.1029/2002JB002023
Egli, R. 2004. Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments. Revue Studia Geophysica et Geodaetica, 48, 391-446.
Egli, R., Chen, A. P., Winklhofer, M., Kodama, K. P. & Horng, C. S. 2010. Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochemistry, Geophysics, Geosystems, 11, Q01Z11, http://doi.org/10.1029/2009GC002916
Ehrenberg, S. N. & Svana, T. A. 2001. Use of spectral gamma-ray signature to interpret stratigraphic surfaces in carbonate strata: an example from the Finnmark carbonate platform (Carboniferous-Permian), Barents Sea. AAPG Bulletin, 85, 295-308.
Ellwood, B. B., Crick, R. E. & El Hassani, A. 1999. Magnetosusceptibility event and cyclostratigraphy (MSEC) method used in geological correlation of Devonian rocks from Anti-Atlas Morocco. The American Association of Petroleum Geologists, Bulletin, 83, 1119-1134.
Ellwood, B. B., Crick, R. E., El Hassani, A., Benoist, S. L. & Young, R. H. 2000. Magnetosusceptibility event and cyclostratigraphy method applied to marine rocks: detrital input v. carbonate productivity. Geology, 28, 1135-1138.
Ellwood, B. B., Crick, R. E., Carcia-Alcade Fernandez, J. L., Soto, F. M., Truyóls-Massoni, M., El Hassani, A. & Kovas, E. J. 2001. Global correlation using magnetic susceptiblity data from Lower Devonian rocks. Geology, 29, 583-586.
Ellwood, B. B., García-Alcalde, J. L. 2006. Stratigraphy of the Middle Devonian boundary: Formal definition of the susceptibility magnetostratotype in Germany with comparisons to sections in the Czech Republic, Morocco and Spain. Tectonophysics, 418, 31-49.
Ellwood, B. B., Tomkin, J. H., Richards, B. C., Benoist, S. L. & Lambert, L. L. 2007. MSEC data sets record glacially driven cyclicity: examples from the arrow canyon Mississippian-Pennsylvanian GSSP and associated sections. Palaeogeography, Palaeoclimatology, Palaeoecology, 255, 377-390.
Ellwood, B. B., Tomkin, J. H., Febo, L. A. & StuartJr.C. N. 2008. Time series analysis of magnetic susceptibility variations in deep marine sedimentary rocks: a test using the upper Danian-Lower Selandian proposed GSSP, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 261, 270-279.
Ellwood, B. B., Algeo, T. J., El Hassani, A., Tomkin, J. H. & Rowe, H. D. 2011a. Defining the timing and duration of the Kačák Interval within the Eifelian/Givetian boundary GSSP, Mech Irdane, Morocco, using geochemical and magnetic susceptibility patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 74-84.
Ellwood, B. B., Tomkin, J. H. 2011b. A climate-driven model and development of a floating point time scale for the entire Middle Devonian Givetian Stage: a test using magnetostratigraphy susceptibility as a climate proxy. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 85-95.
Ellwood, B. B., Wang, W.-H., Tomkin, J. H., Ratcliffe, K. T., El Hassani, A. & Wright, A. M. 2013. Testing high resolution magnetic susceptibility and gamma radiation methods in the Cenomanian-Turonian (Upper Cretaceous) GSSP and near-by coeval section. Palaeogeography, Palaeoclimatology, Palaeoecology, 378, 75-90.
Ellwood, B. B., El Hassani, A., Tomkin, J. H. & Bultynck, P. 2015. A climate-driven model and development of a floating-point timescale for the middle devonian Eifelian stage using time-series analysis of magnetic susceptibility (χ) data set. In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-a Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online November 21, 2014, http://doi.org/10.1144/SP414.4
English, L. T. P. 1999. The use of magnetic susceptibility and trace element geochemistry for the correlation of fine-grained siliciclastic sequences: a Late Llandovery example from northwest England. Geological Magazine, 136, 423-436.
Evans, M. E. & Heller, F. 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, New York.
Font, E., Trinidade, R. I. F. & Nédélec, A. 2005. Detrital remagnetization in haematite-bearing Neoproterozoic Puga cap dolostone, Amazon craton: a rock magnetic and SEM study. Geophysical Journal International, 163, 491-500.
Font, E., Nascimento, C., Omira, R., Baptista, M. A. & Silva, P. F. 2010. Identification of tsunami-induced deposits using numerical modeling and rock magnetism techniques: a study case of the 1755 Lisbon tsunami in Algarve, Portugal. Physics of the Earth and Planetary Interiors, 182, 187-198.
Foubert, A. & Henriet, J. P. 2009. Nature and Significance of the Recent Carbonate Mound Record. The Mound Challenger Code. Springer, Berlin, Lecture Notes in Earth Sciences, 126.
Frank, M. 2002. Radiogenic isotopes: tracers of past ocean circulation and erosional input. Reviews of Geophysics, 40, 1-1-1-38.
García-Alcalde, J. L., Ellwood, B. B., Soto, F., Truyóls-Massoni, M. & Tomkin, J. H. 2012. Precise timing of the Upper Taghanic Biocrisis, Geneseo Bioevent, in the Middle-Upper Givetian (Middle Devonian) boundary in Northern Spain using biostratigraphic and magnetic susceptibility data sets. Palaeogeography, Palaeoclimatology, Palaeoecology, 313-314, 26-40.
Geršl, M. & Hladil, J. 2004. Gamma-ray and magnetic susceptibility correlation across a Frasnian carbonate platform and the search for 'punctata' equivalents in stromatoporoid-coral limestone facies of Moravia. Geological Quarterly, 48, 283-292.
Grabowski, J., Schnyder, J. 2013. Magnetic susceptibility and spectral gamma logs in the Tithonian-Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretaceous Research, 43, 1-17.
Grabowski, J., Narkiewicz, M. & De Vleeschouwer, D. 2015. Forcing factors of the magnetic susceptibility signal in lagoonal and subtidal depositional cycles from the Zachełmie section (Eifelian, Holy Cross Mountains, Poland). In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online February 6, 2015, http://doi.org/10.1144/SP414.5
Hinnov, L. A. & Hilgen, F. J. 2012. Chapter 4-cyclostratigraphy and astrochronology. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. The Geologic Time Scale. Elsevier, Boston, MA, 63-83.
Hladil, J. 2002. Geophysical records of dispersed weathering products on the Frasnian carbonate platform and early Famennian ramps in Moravia, Czech Republic: proxies for eustasy and palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 213-250.
Hladil, J., Slavik, L., Carew, J. L., Mylroie, J. E. & Gersl, M. 2003. Early diagenetic origin and persistence of gamma-ray and magnetosusceptibility patterns in platform carbonates: comparison of Devonian and Quaternary sections. Physics and Chemistry of the Earth, 28, 719-727.
Hladil, J., Carew, J. L. 2004. Anomalous magnetic susceptibility values and traces of subsurface microbial activity in carbonate banks on San Salvador Island, Bahamas. Facies, 50, 161-182.
Hladil, J., Gersl, M., Strnad, L., Frana, J., Langrova, A. & Spisiak, J. 2006. Stratigraphic variation of complex impurities in platform limestones and possible significance of atmospheric dust: a study with emphasis on gamma-ray spectrometry and magnetic susceptibility outcrop logging (Eifelian-Frasnian, Moravia, Czech Republic). International Journal of Earth Science, 95, 703-723.
Hladil, J., Koptikova, L. 2009. Early Middle Frasnian platform reef strata in the Moravian Karst interpreted as recording the atmospheric dust changes: the key to understanding perturbations in the punctata conodont Zone. Bulletin of Geosciences, 84, 75-106.
Hladil, J., Cejchan, P., Babek, O., Koptikova, L., Navratil, T. & Kubinova, P. 2010a. Dust-a geology-orientated attempt to reappraise the natural components, amounts, inputs to sediment, and importance for correlation purposes. Geologica Belgica, 13, 367-384.
Hladil, J., Vondra, M., Cejchan, P., Vich, R., Koptikova, L. & Slavik, L. 2010b. The dynamic time-warping approach to comparison of magnetic-susceptibility logs and application to lower Devonian calciturbidites (Prague Synform, Bohemian Massif). Geologica Belgica, 13, 385-406.
Hounslow, M. W. & Maher, B. A. 1999. Laboratory procedures for quantitative extraction and analysis of magnetic minerals from sediments. In: Walden, J., Oldfield, F. & Smith, J. (eds) Environmental Magnetism, a Practical Guide. Quaternary Research Association, London, Technical Guides, 139-164.
Jackson, M., Rochette, P., Fillion, G., Banerjee, S. & Marvin, J. 1993. Rock magnetism of remagnetized Palaeozoic carbonates: low-temperature behavior and susceptibility characteristics. Journal of Geophysical Research, 98, 6217-6225.
Jadot, H. & Boulvain, F. 2015. Sedimentology and magnetic susceptibility of recent sediments from New Caledonia. In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online February 6, 2015, http://doi.org/10.1144/SP414.2
Kirschvink, J. L. & Chang, S. B. R. 1984. Ultrafine-grained magnetite in deep-sea sediments: possible bacterial magnetofossils. Geology, 12, 559-562.
Kopp, R. E. & Kirschvink, J. L. 2008. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth-Science Reviews, 86, 42-61.
Koptíková, L. 2011. Precise position of the Basal Choteč event and evolution of sedimentary environments near the Lower-Middle Devonian boundary: the magnetic susceptibility, gamma-ray spectrometric, lithological, and geochemical record of the Prague Synform (Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 96-112.
Koptíková, L., Bábek, O., Hladil, J., Kalvoda, J. & Slavík, L. 2010a. Stratigraphic significance and resolution of spectral reflectance logs in Lower Devonian carbonates of the Barrandian area, Czech Republic; a correlation with magnetic susceptibility and gamma-ray logs. Sedimentary Geology, 225, 83-98.
Koptíková, L., Hladil, J., Slavík, L., Čejchan, P. & Bábek, O. 2010b. Fine-grained non-carbonate particles embedded in neritic to pelagic limestones (Lochkovian to Emsian, Prague Synform, Czech Republic): composition, provenance and Links to magnetic susceptibility and gamma-ray logs. Geologica Belgica, 13, 407-430.
Kozłowski, W. & Sobień, K. 2012. Mid-Ludfordian coeval carbon isotope, natural gamma ray and magnetic susceptibility excursions in the Mielnik IG-1 borehole (Eastern Poland)-dustiness as a possible link between global climate and the Silurian carbon isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 339-341, 74-97.
Kruiver, P. P., Dekkers, M. J. & Heslop, D. 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth and Planetary Science Letters, 189, 269-276.
Mabille, C. & Boulvain, F. 2007. Sedimentology and magnetic susceptibility of the Upper Eifelian-Lower Givetian (Middle Devonian) in SW Belgium: insights into carbonate platform initiation. In: Alvaro, J. J., Aretz, M., Boulvain, F., Munnecke, A., Vachard, D. & Vennin, E. (eds) Palaeozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls. Geological Society, London, Special Publications, 275, 109-123.
Mabille, C. & Boulvain, F. 2008. Les Monts de Baileux section: detailed sedimentology and magnetic susceptibility of Hanonet, Trois-Fontaines and Terres d'Haurs Formation (Eifelian/Givetian boundary and Lower Givetian, SW Belgium). Geologica Belgica, 11, 93-121.
Mabille, C., Pas, D., Aretz, M., Boulvain, F., Schröder, S. & Da Silva, A. C. 2008. Deposition within the vicinity of the Mid-Eifel High: detailed sedimentological study and magnetic susceptibility of a mixed ramp-related system from the Eifelian Lauch and Nohn Formations (Ohlesberg, Eifel, Germany). Facies, 54, 597-612.
Maher, B. A. 2011. The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance. Aeolian Research, 3, 87-144.
Mayrhofer, S. & Lukeneder, A. 2015. Susceptibility and radiometry data used for stratigraphic correlations: case study on Upper Triassic beds in Turkey. In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online April 1, 2015, http://doi.org/10.1144/SP414.10
Mead, A. G. & Tauxe, L. 1986. Oligocène Paleoceanography of the South Atlantic: paleoclimatic implications of sediment accumulation rates and magnetic susceptibility measurements. Paleoceanology, 1, 273-284.
Meyers, S. R. & Sageman, B. B. 2007. Quantification of deep-time orbital forcing by average spectral misfit. American Journal of Science, 307, 773-792.
Michel, J., Boulvain, F., Philippo, S. & Da Silva, A. C. 2010. Palaeoenvironmental study and small scale correlations using facies analysis and magnetic susceptibility of the mid-Emsian (Himmelbaach quarry, Luxembourg). In: da Silva, A. C. & Boulvain, F. (eds) Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geologica Belgica, 13, 447-458.
Mullins, C. E. & Tite, M. S. 1973. Magnetic viscosity, quadrature susceptibility, and frequency dependence of susceptibility in single-domain assemblies of magnetite and maghemite. Journal of Geophysic Research, 78, 804-809.
Nawrocki, J., Polechonska, O. & Werner, T. 2008. Magnetic susceptibility and selected geochemical-mineralogical data as proxies for Early to Middle Frasnian (Late Devonian) carbonate depositional settings in the Holy Cross Mountains, southern Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 269, 176-188.
Oldfield, F., Dearing, J. A., Thompson, R. & Garrett-Jones, S. E. 1978. Some magnetic properties of lake sediments and their possible links with erosion rates. Polskie Archiwum Hydrobiologii, 25, 321-331.
Parry, L. G. 1982. Magnetization of immobilized particle dispersions with two distinct particles sizes. Physics of the Earth and Planetary interiors, 28, 230-241.
Pas, D., Da Silva, A. C. 2015. Sedimentary development and magnetic susceptibility evolution of the Frasnian carbonate platform in Western Belgium (Dinant Synclinorium, La Thure section). In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online December 8, 2014, http://doi.org/10.1144/SP414.7
Racki, G., Racka, M., Matyja, H. & Devleeschouwer, X. 2002. The Frasnian/Famennian boundary interval in the South Polish-Moravian shelf basins: integrated event-stratigraphical approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 181, 251-297.
Radhakrishnamurty, C., Likhite, S. D., Amin, B. S. & Somayajulu, B. L. K. 1968. Magnetic susceptibility stratigraphy in ocean sediment cores. Earth and Planetary Science Letters, 4, 464-468.
Rey, D., Rubio, B., Mohamed, K., Vilas, F., Alonso, B., Ercilla, G. & Rivas, T. 2008. Detrital and early diagenetic processes in Late Pleistocene and Holocene sediments from the SW Galicia Bank inferred from high-resolution enviromagnetic and geochemical records. Marine Geology, 249, 64-92.
Riquier, L., Averbuch, O., Devleeschouwer, X. & Tribovillard, N. 2010. Diagenetic v. detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: implications for paleoenvironmental reconstructions. International Journal of Earth Sciences, 99, S57-S73.
Roberts, A. P., Pike, C. R. & Verosub, K. L. 2000. First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research, 105, 28461-28475.
Roberts, A. P., Liu, Q., Rowan, C. J., Chang, L., Carvallo, C., Torrent, J. & Horng, C. S. 2006. Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. Journal of Geophysical Research: Solid Earth, 111, B12S35, http://doi.org/10.1029/2006JB004715
Robertson, D. J. & France, D. E. 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Physics of the Earth and Planetary interiors, 82, 223-234.
Robinson, S. G. 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Physics of the Earth and Planetary interiors, 42, 22-47.
Rodionov, V. P., Dekkers, M. J., Khramov, A. N., Gurevich, E. L., Krijgsman, W., Duermeijer, C. E. & Heslop, D. 2003. Paleomagnetism and cyclostratigraphy of the Middle Ordovician Krivolutsky suite, Krivaya Luka section, southern Siberian platform: record of non-synchronous NRM-components or a non-axial geomagnetic field?. Studia Geophysica Geodaetica, 47, 255-274.
Sardar Abadi, A., Da Silva, A. C., Mossadegh, H., Spassov, S. & Boulvain, F. 2015. Lower Carboniferous ramp sedimentation of the Central Alborz Basin, northern Iran: integrated sedimentological and rock-magnetic studies. In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-A Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online May 26, 2015, http://doi.org/10.1144/SP414.13
Shackleton, N. J., Crowhurst, S. J., Weedon, G. P. & Laskar, J. 1999. Astronomical calibration of Oligocene-Miocene time. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357, 1907-1929.
Śliwiński, M. G., Whalen, M. T., Meyer, F. J. & Majs, F. 2012. Constraining clastic input controls on magnetic susceptibility and trace element anomalies during the Late Devonian punctata Event in the Western Canada Sedimentary Basin. Terra Nova, 24, 301-309.
Spassov, S. & Valet, J. P. 2012. Detrital magnetizations from redeposition experiments of different natural sediments. Earth and Planetary Science Letters, 351-352, 147-157.
Stage, M. 2001. Magnetic susceptibility as carrier of a climatic signal in chalk. Earth and Planetary Science Letters, 188, 17-27.
Tauxe, L. 2010. Essentials of Paleomagnetism. University of California Press, Berkeley.
Tauxe, L., Bertam, H. N. & Seberino, C. 2002. Physical interpretation of hysteresis loops: micromagnetic modeling of fine particle magnetite. Geochemistry, Geophysics, Geosystems, 3, 1-22.
Tite, M. S. & Linington, R. E. 1975. Effect of climate on the magnetic susceptibility of soils. Nature, 256, 565-566.
Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12-32.
Walden, J., Oldfield, F. & Smith, J. 1999. Environmental Magnetism: a Practical Guide. Quaternary Research Association, London, Technical Guides, 6, 1-244.
Whalen, M. T. & Day, J. 2008. Magnetic susceptibility, biostratigraphy and sequence stratigraphy: insights into Devonian carbonate platform development and basin infilling, Western Alberta, Canada. In: Controls on Carbonate Platform and Reef Development. Society of Economic Paleontologists and Mineralogists, Tulsa, OK, Special Publications, 89, 291-314.
Whalen, M. T. & Day, J. 2010. Cross-basin variations in magnetic susceptibility influenced by changing sea level, paleogeography, and paleoclimate: upper Devonian, Western Canada. Journal of Sedimentary Research, 80, 1109-1127.
Whalen, M. T., Sliwinski, M. G., Payne, J. H., Day, J. E., Chen, D. & Da Silva, A. C. 2015. Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian-Famennian transition in western Canada and southern China: implications for carbon and nutrient cycling and mass extinction. In: Da Silva, A. C., Whalen, M. T. (eds) Magnetic Susceptibility Application-a Window onto Ancient Environments and Climatic Variations. Geological Society, London, Special Publications, 414. First published online February 9, 2015, http://doi.org/10.1144/SP414.8
Zhang, S., Wang, X. & Zhu, H. 2000. Magnetic susceptibility variations of carbonates controlled by sea level changes-examples in Devonian to Carboniferous strata in southern Guizhou Province, China. Science in China, Series D, 43, 266-276.
Zwing, A., Matzka, J., Bacvhtadse, V. & Soffel, H. C. 2005. Rock magnetic properties of remagnetized Palaeozoic clastic and carbonate rocks from the NE Renish massif, Germany. Geophysical Journal International, 160, 477-486.