Friction Stir Welding; Material Flow; Particle tracing; BES; BFECC; RK4
Abstract :
[en] This work deals with the modeling of the material flow in Friction Stir Welding (FSW) processes using particle tracing method. For the computation of particle trajectories, three accurate and computationally efficient integration methods are implemented within a FE model for FSW process: the Backward Euler with Sub-stepping (BES), the 4-th order Runge-Kutta (RK4) and the Back and Forth Error Compensation and Correction (BFECC) methods. Firstly, their performance is compared by solving the Zalesak’s disk benchmark. Later, the developed methodology is applied to some FSW problems providing a quantitative 2D and 3D view of the material transport in the process area. The material flow pattern is compared to the experimental evidence.
Disciplines :
Mechanical engineering
Author, co-author :
Dialami, Narges; Technical University of catalonia
Chiumenti, Michele; Technical University of Catalonia
Cervera, Miguel; technical University of catalonia
Agelet de Saracibar, Carlos; Technical University of catalonia
Ponthot, Jean-Philippe ; Université de Liège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
Material Flow Visualization Friction Stir Welding via Particle Tracing
Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) Friction-stir butt welding. GB Patent No. 9125978.8, International Patent No. PCT/GB92/02203
Mishra RS, Ma ZY (2005) Friction Stir Welding and processing. Mater Sci Eng R 50:1–78
London B, Mahoney M, Bingel B, Calabrese R, Waldron D (2001) Experimental methods for determining material flow in friction stir welds. The third International symposium on Friction Stir Welding, Kobe, Japan, 27–28 September
Reynolds AP (2008) Flow visualization and simulation in FSW. Scr Mater 58:338–342
Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 Friction Stir Welds using a marker insert technique. Metall Mater Trans A32:2879–2884
Colligan K (1999) Material flow behaviour during Friction Stir Welding of aluminium. Weld J 78:229–237
Guerra M, Schmids C, McClure JC, Murr LE, Nunes AC (2003) Flow patterns during Friction Stir Welding. Mater Charact 49:95–101
Dickerson T, Shercliff HR, Schmidt H (2003) A weld marker technique for flow visualization in Friction Stir Welding. 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 14–16 May
Kallgren T, Jin L-Z, Sandstrom R (2008) Material flow during Friction Stir Welding of copper. 7th International Friction Stir Welding symposium, Awaji Island, Japan, 20–22 May
Johnson R, Threadgill P (2003) Friction Stir Welding of magnesium alloys. Magnes Technol
Ouyang J, Yarrapareddy E, Kovacevic R (2006) Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. J Mater Process Technol 172:110–122
Abdollah-Zadeh A, Saeid T, Sazgari B (2008) Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. J Alloys Comp 460:535–538
Buffa G, Fratini L, Micari F, Shivpuri R (2008) Material flow in FSW of T-joints: experimental and numerical analysis. Int J Metal Form 1(1):1283–1286
Buffa G, Ducato A, Fratini L (2011) Numerical procedure for residual stresses prediction in Friction Stir Welding. Finite Elem Anal Des 47(4):470–476
Alfaro I, Racineux G, Poitou A, Cueto E, Chinesta F (2009) Numerical simulation of Friction Stir Welding by natural element methods. Int J Metal Form 2(4):225–234
Guerdoux S, Fourment L (2009) A 3D numerical simulation of different phases of Friction Stir Welding. Model Simul Mater Sci Eng 17:075001
Feulvarch E, Roux J-C, Bergheau J-M (2013) A simple and robust moving mesh technique for the finite element simulation of Friction Stir Welding. J Comput Appl Math 246:269–277
Chiumenti M, Cervera M, Agelet de Saracibar C, Dialami N (2013) Numerical modeling of Friction Stir Welding processes. Comput Methods Appl Mech Eng 254:353–369
Dialami N, Chiumenti M, Cervera M, Agelet de Saracibar C (2013) An apropos kinematic framework for the numerical modelling of Friction Stir Welding. Comput Struct 117:48–57
Agelet de Saracibar C, Chiumenti M, Cervera M, Dialami N, Seret A (2014) Computational modeling and sub-grid scale stabilization of incompressibility and convection in the numerical simulation of Friction Stir Welding processes. Arch Comput Methods Eng 21(1), Accepted
Bussetta P, Dialami N, Boman R, Chiumenti M, Agelet de Saracibar C, Cervera M, Ponthot J-P (2013) Comparison of a fluid and a solid approach for the numerical simulation of Friction Stir Welding with a non-cylindrical pin, Steel research international, accepted
Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New York
Agelet de Saracibar C, Chiumenti M, Valverde Q, Cervera M (2006) On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity. Comput Methods Appl Mech Eng 195:1224–1251
Cervera M, Chiumenti M, Valverde Q, Agelet de Saracibar C (2003) Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Comput Methods Appl Mech Eng 192:5249–5263
Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M (2004) A stabilized formulation for incompressible plasticity using linear triangles and tetrahedral. Int J Plast 20:1487–1504
Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M (2001) A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng 191:5253–5264
Agelet de Saracibar C, Cervera M, Chiumenti M (1999) On the formulation of coupled thermoplastic problems with phase-change. Int J Plast 15:1–34
Cervera M, Agelet de Saracibar C, Chiumenti M (1999) Thermo-mechanical analysis of industrial solidification processes. Int J Numer Methods Eng 46:1575–1591
Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms, 1st edn. MIT Press and McGraw-Hill. ISBN 0-262-03141-8
Dupont T, Liu Y-J (2002) Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. J Comput Phys 183:83–116
Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer-Verlag, New York
Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49
Reynolds AP (2000) Visualisation of material flow in autogenous friction stir welds. Sci Technol Weld Join 5(2):120–124
Santiago D, Lombera G, Urquiza S, Agelet de Saracibar C, Chiumenti M (2010) Modelado termomecánico del proceso de Friction Stir Welding utilizando la geometría real de la herramienta. Rev Int Métodos Numéricos para Cálculo Diseño Ing 26(4):293–303