[en] From the massive international space station to nanosatellites, all space missions share a common principle: orbiting an object requires energy. The greater the satellite's mass, the higher the launch cost. In astrodynamics, this translates into the motto ``use whatever you can''. This concept encompasses a broad spectrum of missions, e.g., the Earth's oblateness is exploited for sun-synchronous orbits and the kinetic energy of a planet is used to accomplish fly-by maneuvers. Nowadays, the same paradigm is coming on stream in the context of distributed space systems, where complex missions are envisaged by splitting the workload of a single satellite into multiple agents. Orbital perturbations -- often regarded as disturbances -- can be turned into an opportunity to control the relative motion of the agents in order to reduce or even remove the need for on-board propellant.
This thesis is an attempt to combine uncertainty quantification, analytical propagation, and optimal control of satellite trajectories in the atmosphere for effectively and robustly exploiting the aerodynamic force. Specifically, by means of a probabilistic estimation and prediction of the aerodynamic force and an efficient and consistent propagation of low-Earth orbits, a robust reference trajectory for the realization of relative maneuvers between two satellites in a realistic environment can be generated.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Dell'Elce, Lamberto ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
Satellite Orbits in the Atmosphere: Uncertainty Quantification, Propagation and Optimal Control
Defense date :
22 April 2015
Institution :
ULiège - Université de Liège
Degree :
Doctor in Engineering Sciences
Promotor :
Kerschen, Gaëtan ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
President :
Bruls, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique
Jury member :
Gurfil, Pini
Klinkrad, Heiner
Scheeres, Daniel
Arnst, Maarten ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Magin, Thierry
Rochus, Pierre ; Université de Liège - ULiège > Département d'aérospatiale et mécanique
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture