[en] The lack of global field models accurate beyond the inner magnetosphere (<30 RJ) makes it difficult to relate Jupiter's polar auroral features to magnetospheric source regions. We recently developed a model that maps Jupiter's equatorial magnetosphere to the ionosphere using a flux equivalence calculation that requires equal flux at the equatorial and ionospheric ends of flux tubes. This approach is more accurate than tracing field lines in a global field model but only if it is based on an accurate model of Jupiter's internal field. At present there are three widely used internal field models—Voyager Io Pioneer 4 (VIP4), the Grodent Anomaly Model (GAM), and VIP Anomaly Longitude (VIPAL). The purpose of this study is to quantify how the choice of an internal field model affects the mapping of various auroral features using the flux equivalence calculation. We find that different internal field models can shift the ionospheric mapping of points in the equatorial plane by several degrees and shift the magnetospheric mapping to the equator by ~30 RJ radially and by less than 1 h in local time. These shifts are consistent with differences in how well each model maps the Ganymede footprint, underscoring the need for more accurate Jovian internal field models. We discuss differences in the mapping of specific auroral features and the size and location of the open/closed field line boundary. Understanding these differences is important for the continued analysis of Hubble Space Telescope images and in planning for Juno's arrival at Jupiter in 2016.
Research Center/Unit :
LiSRI - Liège Space Research Institute - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Vogt, Marissa
Bunce, Emma
Kivelson, Margaret
Khurana, Krishan
Walker, Raymond
Radioti, Aikaterini ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Bonfond, Bertrand ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Magnetosphere-ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bagenal, F., et al., (2014), Magnetospheric science objectives of the Juno mission, Space Sci. Rev., doi: 10.1007/s11214-014-0036-8.
Bonfond, B., (2013), When moons create aurora: The satellite footprints on giant planets, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, Geophys. Monogr. Ser., vol. 197, edited by, A. Keiling, et al., pp. 133-140, AGU, Washington, D. C., doi: 10.1029/2011GM001169.
Bonfond, B., D. Grodent, J.-C. Gérard, T. Stallard, J. T. Clarke, M. Yoneda, A. Radioti, and, J. Gustin, (2012), Auroral evidence of Io's control over the magnetosphere of Jupiter, Geophys. Res. Lett., 39, L01105, doi: 10.1029/2011GL050253.
Broadfoot, A. L., et al., (1979), Extreme ultraviolet observations from Voyager 1 encounter with Jupiter, Science, 204, 979-982.
Bunce, E. J., S. W. H. Cowley, and, T. K. Yeoman, (2004), Jovian cusp processes: Implications for the polar aurora, J. Geophys. Res., 109, A09S13, doi: 10.1029/2003JA010280.
Clarke, J. T., et al., (2002), Ultraviolet emissions from the magnetic footprints of Io, Ganymede, and Europa on Jupiter, Nature, 415, 997-1000.
Connerney, J., M. Acuña, and, N. Ness, (1981), Modeling the Jovian current sheet and inner magnetosphere, J. Geophys. Res., 86 (A10), 8370-8384, doi: 10.1029/JA086iA10p08370.
Connerney, J. E. P., R. Baron, T. Satoh, and, T. Owen, (1993), Images of excited H3+ at the foot of the Io flux tube in Jupiter's atmosphere, Science, 262, 1035-1038.
Connerney, J. E. P., M. H. Acuña, N. F. Ness, and, T. Satoh, (1998), New models of Jupiter's magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103, 11,929-11,939, doi: 10.1029/97JA03726.
Cowley, S. W. H., and, E. J. Bunce, (2001), Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system, Planet. Space Sci., 49, 1067-1088.
Cowley, S. W. H., and, E. J. Bunce, (2003a), Modulation of Jovian middle magnetosphere currents and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: Initial response and steady state, Planet. Space Sci., 51, 31-56.
Cowley, S. W. H., and, E. J. Bunce, (2003b), Modulation of Jupiter's main auroral oval emissions by solar wind-induced expansions and compressions of the magnetosphere, Planet. Space Sci., 51, 57-79.
Cowley, S. W. H., E. J. Bunce, T. S. Stallard, and, S. Miller, (2003), Jupiter's polar ionospheric flows: Theoretical interpretation, Geophys. Res. Lett., 30 (5), 1220, doi: 10.1029/2002GL016030.
Delamere, P. A., and, F. Bagenal, (2010), Solar wind interaction with Jupiter's magnetosphere, J. Geophys. Res., 115, A10201, doi: 10.1029/2010JA015347.
Gérard, J.-C., D. Grodent, A. Radioti, B. Bonfond, and, J. T. Clarke, (2013), Hubble observations of Jupiter's north-south conjugate ultraviolet aurora, Icarus, 226, 1559-1567.
Grodent, D., (2014), A brief review of ultraviolet auroral emissions on giant planets, Space Sci. Rev., doi: 10.1007/s11214-014-0052-8.
Grodent, D., J. T. Clarke, J. Kim, J. H. Waite, and, S. W. H. Cowley, (2003a), Jupiter's main auroral oval observed with HST-STIS, J. Geophys. Res., 108 (A11), 1389, doi: 10.1029/2003JA009921.
Grodent, D., J. T. Clarke, J. H. Waite Jr., S. W. H. Cowley, J.-C. Gérard, and, J. Kim, (2003b), Jupiter's polar auroral emissions, J. Geophys. Res., 108 (A10), 1366, doi: 10.1029/2003JA010017.
Grodent, D., J.-C. Gérard, J. T. Clarke, G. R. Gladstone, and, J. H. Waite, (2004), A possible auroral signature of a magnetotail reconnection process on Jupiter, J. Geophys. Res., 109, A05201, doi: 10.1029/2003JA010341.
Grodent, D., J.-C. Gérard, A. Radioti, B. Bonfond, and, A. Saglam, (2008a), Jupiter's changing auroral location, J. Geophys. Res., 113, A01206, doi: 10.1029/2007JA012601.
Grodent, D., B. Bonfond, J.-C. Gérard, A. Radioti, J. Gustin, J. T. Clarke, J. Nichols, and, J. E. P. Connerney, (2008b), Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere, J. Geophys. Res., 113, A09201, doi: 10.1029/2008JA013185.
Hanlon, P. G., M. K. Dougherty, N. Krupp, K. C. Hansen, F. J. Crary, D. T. Young, and, G. Tóth, (2004), Dual spacecraft observations of a compression event within the Jovian magnetosphere: Signatures of externally triggered supercorotation?, J. Geophys. Res., 109, A09S09, doi: 10.1029/2003JA010116.
Hess, S. L. G., B. Bonfond, P. Zarka, and, D. Grodent, (2011), Model of the Jovian magnetic field topology constrained by the Io auroral emissions, J. Geophys. Res., 116, A05217, doi: 10.1029/2010JA016262.
Hill, T. W., (1979), Inertial limit on corotation, J. Geophys. Res., 84 (A11), 6554-6558, doi: 10.1029/JA084iA11p06554.
Hill, T. W., (2001), The Jovian auroral oval, J. Geophys. Res., 106, 8101-8107, doi: 10.1029/2000JA000302.
Joy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and, T. Ogino, (2002), Probabilistic models of the Jovian magnetopause and bow shock locations, J. Geophys. Res., 107 (A10), 1309, doi: 10.1029/2001JA009146.
Khurana, K. K., (2001), Influence of solar wind of Jupiter's magnetosphere deduced from currents in the equatorial plane, J. Geophys. Res., 106, 25,999-26,016, doi: 10.1029/2000JA000352.
Kivelson, M. G., and, K. K. Khurana, (2002), Properties of the magnetic field in the Jovian magnetotail, J. Geophys. Res., 107 (A8), 1196, doi: 10.1029/2001JA000249.
Kronberg, E. A., J. Woch, N. Krupp, A. Lagg, K. K. Khurana, and, K.-H. Glassmeier, (2005), Mass release at Jupiter: Substorm-like processes in the Jovian magnetotail, J. Geophys. Res., 110, A03211, doi: 10.1029/2004JA010777.
Nichols, J. D., (2011), Magnetosphere-ionosphere coupling in Jupiter's middle magnetosphere: Computations including a self-consistent current sheet magnetic field model, J. Geophys. Res., 116, A10232, doi: 10.1029/2011JA016922.
Nichols, J. D., J. T. Clarke, J. C. Gérard, D. Grodent, and, K. C. Hansen, (2009), Variation of different components of Jupiter's auroral emission, J. Geophys. Res., 114, A06210, doi: 10.1029/2009JA014051.
Pallier, L., and, R. Prangé, (2001), More about the structure of the high-latitude Jovian aurorae, Planet. Space Sci., 49, 1159-1173.
Radioti, A., J.-C. Gérard, D. Grodent, B. Bonfond, N. Krupp, and, J. Woch, (2008a), Discontinuity in Jupiter's main auroral oval, J. Geophys. Res., 113, A01215, doi: 10.1029/2007JA012610.
Radioti, A., D. Grodent, J.-C. Gérard, B. Bonfond, and, J. T. Clarke, (2008b), Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter's magnetotail, Geophys. Res. Lett., 35, L03104, doi: 10.1029/2007GL032460.
Radioti, A., D. Grodent, J.-C. Gérard, and, B. Bonfond, (2010), Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter, J. Geophys. Res., 115, A07214, doi: 10.1029/2009JA014844.
Radioti, A., D. Grodent, J.-C. Gérard, M. F. Vogt, M. Lystrup, and, B. Bonfond, (2011), Nightside reconnection at Jupiter: Auroral and magnetic field observations from July 26, 1998, J. Geophys. Res., 116, A03221, doi: 10.1029/2010JA016200.
Ray, L. C., R. E. Ergun, P. A. Delamere, and, F. Bagenal, (2010), Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport, J. Geophys. Res., 115, A09211, doi: 10.1029/2010JA015423.
Ray, L. C., N. A. Achilleos, M. F. Vogt, and, J. N. Yates, (2014), Local time variations in Jupiter's magnetosphere-ionosphere coupling system, J. Geophys. Res. Space Physics, 119, 4740-4751, doi: 10.1002/2014JA019941.
Russell, C. T., Z. J. Yu, K. K. Khurana, and, M. G. Kivelson, (2001), Magnetic field changes in the inner magnetosphere of Jupiter, Adv. Space Res., 28 (6), 897-902.
Stallard, T. S., S. Miller, S. W. H. Cowley, and, E. J. Bunce, (2003), Jupiter's polar ionospheric flows: Measured intensity and velocity variations poleward of the main auroral oval, Geophys. Res. Lett., 30 (5), 1221, doi: 10.1029/2002GL016031.
Tao, C., R. Kataoka, H. Fukunishi, Y. Takahashi, and, T. Yokoyama, (2005), Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements, J. Geophys. Res., 110, A11208, doi: 10.1029/2004JA010959.
Vasyliu¯nas, V. M., (1983), Plasma distribution and flow, in Physics of the Jovian Magnetosphere, edited by, A. J. Dessler, p. 395, Cambridge Univ. Press, New York.
Vogt, M. F., and, M. G. Kivelson, (2012), Relating Jupiter's auroral features to magnetospheric sources, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, edited by, A. Keiling, et al., AGU, Washington, D. C., doi: 10.1029/2011GM001181.
Vogt, M. F., M. G. Kivelson, K. K. Khurana, S. P. Joy, and, R. J. Walker, (2010), Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations, J. Geophys. Res., 115, A06219, doi: 10.1029/2009JA015098.
Vogt, M. F., M. G. Kivelson, K. K. Khurana, R. J. Walker, B. Bonfond, D. Grodent, and, A. Radioti, (2011), Improved mapping of Jupiter's auroral features to magnetospheric sources, J. Geophys. Res., 116, A03220, doi: 10.1029/2010JA016148.
Waite, J. H., Jr., et al., (2001), An auroral flare at Jupiter, Nature, 410, 787-789.
Woch, J., N. Krupp, and, A. Lagg, (2002), Particle bursts in the Jovian magnetosphere: Evidence for a near-Jupiter neutral line, Geophys. Res. Lett., 29 (7), 1138, doi: 10.1029/2001GL014080.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.