Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths (Stigonema spp. and Petalonema alatum, Nostocales, Cyanobacteria) using single-cell and filament sequencing of environmental samples
Mares, Jan; Lara, Yannick; Dadakova, Inaet al.
2015 • In Journal of Phycology, 51 (2), p. 288–297
[en] Molecular assessment of a large portion of traditional cyanobacterial taxa has been hindered by the failure to isolate and grow them in culture. In this study, we developed an optimized protocol for single cell/filament isolation and 16S rRNA gene sequencing of terrestrial cyanobacteria with large mucilaginous sheaths, and applied it to determine the phylogenetic position of typical members of the genera Petalonema and Stigonema. A methodology based on a glass-capillary isolation technique and a semi-nested PCR protocol enabled reliable sequencing of the 16S rRNA gene from all samples analyzed. Ten samples covering seven species of Stigonema from Europe, North and Central America, and Hawaii, and the type species of Petalonema from Slovakia were sequenced. Contrary to some previous studies, which proposed a relationship with heteropolar nostocalean cyanobacteria, Petalonema appeared to belong to the family Scytonemataceae. Analysis of Stigonema specimens recovered a unique coherent phylogenetic cluster, substantially broadening our knowledge of the molecular diversity within this genus. Neither the uni- to biseriate species nor the multiseriate species formed monophyletic subclusters within the genus. Typical multiseriate species of Stigonema clustered in a phylogenetic branch derived from uni- to biseriate S. ocellatum Thuret ex Bornet & Flahault in our analysis, suggesting that species with more complex thalli may have evolved from the more simple ones. We propose the technique tested in this study as a promising tool for a future revision of the molecular taxonomy in cyanobacteria.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Environmental sciences & ecology Microbiology
Author, co-author :
Mares, Jan
Lara, Yannick ; Université de Liège > Centre d'ingénierie des protéines
Dadakova, Ina
Hauer, Tomas
Uher, Bohuslav
Wilmotte, Annick ; Université de Liège > Département des sciences de la vie > Physiologie et génétique bactériennes
Kastovsky, Jan
Language :
English
Title :
Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths (Stigonema spp. and Petalonema alatum, Nostocales, Cyanobacteria) using single-cell and filament sequencing of environmental samples
Alternative titles :
[fr] Analyse phylogénétique des cyanobactéries terrestres résistantes à la mise en culture et avec des larges gaines (Stigonema spp. et Petalonema alatum, Nostocales, Cyanobacterie) en utilisant le séquençage de cellules ou filaments isolés à partir d'échantillons environnementaux
Publication date :
April 2015
Journal title :
Journal of Phycology
ISSN :
0022-3646
eISSN :
1529-8817
Publisher :
Blackwell Publishing, Oxford, United Kingdom
Volume :
51
Issue :
2
Pages :
288–297
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Single cell sequencing of cyanobacteria
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique ULg - Université de Liège
Funding text :
Université de Liège (short-term research fellowship for foreign doctoral students)
Bahl, J., Lau, M. C. Y., Smith, G. J. D., Vijaykrishna, D., Cary, S. C., Lacap, D. C., Lee, C. K. et al. 2011. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat. Commun. 2:163.
Billi, D., Caiola, M. G., Paolozzi, L. & Ghelardini, P. 1998. A method for DNA extraction from the desert cyanobacterium Chroococcidiopsis and its application to identification of ftsZ. Appl. Environ. Microb. 64:4053-6.
Borzì, A. 1879. Notes alla morfologia e biologia delle alghe Ficocromacee. N. Giorn. Bot. Ital. 11:347-88.
Boyer, S. L., Johansen, J. R., Flechtner, V. R. & Howard, G. L. 2002. Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J. Phycol. 38:1222-35.
Casamatta, D. A., Vis, M. L. & Sheath, R. G. 2003. Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aquat. Bot. 77:295-309.
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772-72.
Dvořák, P., Hašler, P. & Poulíčková, A. 2012. Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from Three Continents - A Spatial and Temporal Characterization. PLoS ONE 7:e40153.
Engene, N., Choi, H., Esquenazi, E., Rottacker, E. C., Ellisman, M. H., Dorrestein, P. C. & Gerwick, W. H. 2011. Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ. Microbiol. 13:1601-10.
Engene, E., Coates, R. C. & Gerwick, W. H. 2010. 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J. Phycol. 46:59-601.
Engene, N. & Gerwick, W. H. 2011. Intra-genomic 16S rRNA gene heterogeneity in cyanobacterial genomes. Fottea 1:17-24.
Ferreira, V., Branco, L. H. Z. & Kaštovský, J. 2013. True branched nostocalean cyanobacteria from tropical aerophytic habitats and molecular assessment of two species from field samples. Rev. Biol. Trop. 61:455-66.
Gascuel, O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14:685-95.
Gouy, M., Guindon, S. & Gascuel, O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27:221-4.
Grindberg, R. V., Ishoey, T., Brinza, D., Esquenazi, E., Coates, R. C., Liu, W., Gerwick, L., Dorrenstein, P. C., Pevzner, P., Lasken, R. & Gerwick, W. H. 2011. Single cell genome amplification accelerates identification of the apratoxin biosynthetic pathway from a complex microbial assemblage. PLoS ONE 6:e18565.
Gugger, M. F. & Hoffmann, L. 2004. Polyphyly of true branching cyanobacteria (Stigonematales). Int. J. Syst. Evol. Micr. 54:349-57.
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59:307-21.
Hauer, T., Bohunická, M., Johansen, J. R., Mareš, J. & Berrendero-Gomez, E. 2014. Reassessment of the cyanobacterial family Microchaetaceae and establishment of new families Tolypothrichaceae and Godleyaceae. J. Phycol. 50:1089-1100.
Jaag, O. 1945. Untersuchungen über die Vegetation und die Biologie der Algen des nackten Gesteins in den Alpen, im Jura und schweizerichen Mitteland. Beitr. Kryptogamenfl. Schweiz 9:1-560.
Janse, I., Kardinaal, W. E. A., Meima, M., Fastner, J., Visser, P. M. & Zwart, G. 2004. Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl. Environ. Microb. 70:3979-87.
Johansen, J. R. & Casamatta, D. A. 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algol. Stud./Arch. Hydrobiol. Suppl. 117:71-93.
Kang, H. S., Krunic, A. & Orjala, J. 2012. Stigonemapeptin, an Ahp-containing depsipeptide with elastase inhibitory activity from the bloom-forming freshwater cyanobacterium Stigonema sp. J. Nat. Prod. 75:807-11.
Kashtan, N., Roggensack, S. E., Rodrigue, S., Thompson, J. W., Biller, S. J., Coe, A., Ding, H. et al. 2014. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416-20.
Katoh, K. & Standley, D. M. 2013. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772-80.
Komárek, J. 2010. Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245-59.
Komárek, J. 2013. Cyanoprokaryota -3. Teil/3rd Part: heterocytous genera. In Büdel, B., Gärtner, G., Krienitz, L. & Schagerl, M. [Eds.] Süsswasserflora von Mitteleuropa. Elsevier/Spektrum, Heidelberg, pp. 1130.
Komárek, J. & Anagnostidis, K. 1989. Modern approach to the classification system of Cyanophytes 4 - Nostocales. Algol. Stud./Arch. Hydrobiol. Suppl. 56:247-345.
Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014 according to the polyphasic approach. Preslia 86:295-335.
Komárek, J., Sant Anna, C. L., Bohunická, M., Mareš, J., Hentschke, G. S., Rigonato, J. & Fiore, M. F. 2013. Phenotype diversity and phylogeny of selected Scytonema-species (Cyanoprokaryota) from SE Brazil. Fottea 13:173-200.
Komárková, J., Zapomělová, E. & Komárek, J. 2013. Chakia (cyanobacteria), a new heterocytous genus from Belizean marshes identified on the basis of the 16S rRNA gene. Fottea 13:227-33.
Kosinskaja, E. K. 1926. De Petalonemata, sect. Scytonematis, Monographia. Not. Syst. Inst. Cryptog. Horti Bot. Princip. URSS 4:57-75.
Kukk, E., Hällfors, G. & Niemi, A. 2001. Scytonema alatum (Carmichael) Borzi (Nostocaceae, Nostocales) in a lake in Kuusamo, NE Finland. Algol. Stud./Arch. Hydrobiol. Suppl. 103:47-61.
Lara, Y., Lambion, A., Menzel, D., Codd, G. A. & Wilmotte, A. 2013. A cultivation-independent approach for the genetic and cyanotoxin characterization of colonial cyanobacteria. Aquat. Microb. Ecol. 69:135-43.
Lindemann, S. R., Moran, J. J., Stegen, J. C., Renslow, R. S., Hutchison, J. R., Cole, J. K., Dohnalkova, A. C. et al. 2013. The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling. Front. Microbiol. 4:Article 323.
Martiny, A. C., Tai, A. P. K., Veneziano, D., Primeau, F. & Chisholm, S. W. 2009. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11:823-32.
Miller, M. A., Pfeiffer, W. & Schwartz, T. 2012. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond. ACM, Chicago, Illinois, pp. 1-8.
Mühlsteinová, R. & Hauer, T. 2013. Pilot survey of cyanobacterial diversity from the neighborhood of San Gerardo de Rivas, Costa Rica with a brief summary of current knowledge of terrestrial cyanobacteria in South America. Braz. J. Bot. 36:299-307.
Neilan, B. A., Saker, M. L., Fastner, J., Torokne, A. & Burns, B. P. 2003. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Mol. Ecol. 12:133-40.
Nübel, U., Garcia-Pichel, F. & Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microb. 63:3327-32.
Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L. H., Kováčik, Ľ., Martin, M. P. & Johansen, J. R. 2014. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria). Eur. J. Phycol. 49:450-470.
Řeháková, K., Johansen, J. R., Bowen, M. B., Martin, M. P. & Sheil, C. A. 2014b. Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis. Fottea 14:161-78.
Řeháková, K., Mareš, J., Lukešová, A., Zapomělová, E., Bernardová, K. & Hrouzek, P. 2014a. Nodularia (Cyanobacteria, Nostocaceae): a phylogenetically uniform genus with variable morphotypes. Phytotaxa 172:235-46.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-42.
Skuja, H. 1929. Süsswasseralgen von den westestnischen Inseln Saaremaa und Hiiumaa. Acta Horti Botan. Univ. Latv. 4:1-76.
Strunecký, O., Elster, J. & Komárek, J. 2012. Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microbiol. Ecol. 82:482-90.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:2725-9.
Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microb. 69:5157-69.
Taton, A., Grubisic, S., Ertz, D., Hodgson, D. A., Piccardi, R., Biondi, N., Tredici, M. R., Mainini, M., Losi, D., Marinelli, F. & Wilmotte, A. 2006. Polyphasic study of Antarctic cyanobacterial strains. J. Phycol. 42:1257-70.
Taton, A., Hoffmann, L. & Wilmotte, A. 2008. Cyanobacteria in microbial mats of Antarctic lakes (East Anatrctica) - A microscopical approach. Algol. Stud. 126:173-208.
Uher, B. 2010. Cyanobacterium Petalonema alatum BERK. ex KIRCHN. - species variability and diversity. Fottea 10:83-92.
Vaccarino, M. A. & Johansen, J. R. 2011. Scytonematopsis contorta sp. nov. (Nostocales), a new species from the Hawaiian Islands. Fottea 11:149-61.
Verleyen, E., Sabbe, K., Hodgson, D. A., Grubisic, S., Taton, A., Cousin, S., Wilmotte, A., De Wever, A., Van der Gucht, K. & Vyverman, W. 2010. Structuring effects of climate-related environmental factors on Antarctic microbial mat communities. Aquat. Microb. Ecol. 59:11-24.
Zapomělová, E., Hisem, D., Řeháková, K., Hrouzek, P., Jezberová, J., Komárková, J., Korelusová, J. & Znachor, P. 2008. Experimental comparison of phenotypical plasticity and growth demands of two strains from the Anabaena circinalis/A. crassa complex (Cyanobacteria). J. Plankton Res. 30:1257-69.