[en] Following a recent proposal of L. Wang and D. Babikov, J. Chem. Phys. 137, 064301 (2012), we theoretically illustrate the possibility of using the motional states of a Cd+ ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schrödinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schrödinger equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.
Disciplines :
Chemistry Physics
Author, co-author :
Santos, Ludovic; Université Libre de Bruxelles - ULB
Justum, Yves; Université Paris-Sud 11
Vaeck, Nathalie; Université Libre de Bruxelles - ULB
Desouter, Michèle ; Université de Liège > Département de chimie (sciences) > Département de chimie (sciences)
Language :
English
Title :
Simulation of the elementary evolution operator with the motional states of an ion in an anharmonic trap
Publication date :
2015
Journal title :
Journal of Chemical Physics
ISSN :
0021-9606
eISSN :
1089-7690
Publisher :
American Institute of Physics, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. A. Nielssen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
G. Benenti, G. Casati, and G. Strini, Principles of Quantum Computation and Information (World Scientific, Singapore, 2004).
R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982). 10.1007/BF02650179
I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, and A. Aspuru-Guzik, Annu. Rev. Phys. Chem. 62, 185 (2011). 10.1146/annurev-physchem-032210-103512
A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, Science 309, 1704 (2005). 10.1126/science.1113479
I. Kassal and A. Aspuru-Guzik, J. Chem. Phys. 131, 224102 (2009). 10.1063/1.3266959
M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik, and E. Solano, Sci. Rep. 4, 3589 (2014). 10.1038/srep03589
R. Barends et al., " Digital quantum simulation of fermionic models with a superconducting circuit," e-print arXiv:1501.07703v1 [quant-ph].
A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien, Nature Commun. 5, 4213 (2014). 10.1038/ncomms5213
I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik, Proc. Natl. Acad. Sci. U. S. A. 105, 18681 (2008). 10.1073/pnas.0808245105
A. T. Sornborer, Sci. Rep. 2, 597 (2012). 10.1038/srep000597
W. Zhang, Sci. Bull. 60, 277 (2015). 10.1007/s11434-014-0711-x
T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, Nature 464, 45 (2010). 10.1038/nature08812
S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 515 (2005). 10.1103/RevModPhys.77.513
N. A. Gershenfeld and I. L. Chuang, Science 275, 350 (1997). 10.1126/science.275.5298.350
R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007). 10.1103/RevModPhys.79.1217
Q. Morch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006). 10.1103/revmodphys.78.179
C. M. Tesch, L. Kurtz, and R. de Vivie-Riedle, Chem. Phys. Lett. 243, 633 (2001). 10.1016/S0009-2614(01)00748-5
C. M. Tesch and R. de Vivie-Riedle, Phys. Rev. Lett. 89, 157901 (2002). 10.1103/PhysRevLett.89.157901
J. Vala, Z. Amitay, B. Zhang, S. Leone, and R. Kosloff, Phys. Rev. A 66, 62316 (2002). 10.1103/PhysRevA.66.062316
Z. Amitay, R. Kosloff, and S. R. Leone, Chem. Phys. Lett. 359, 8 (2002). 10.1016/S0009-2614(02)00551-1
U. Troppmann, C. M. Tesch, and R. de Vivie-Riedle, Chem. Phys. Lett. 378, 273 (2003). 10.1016/S0009-2614(03)01266-1
C. M. Tesch and R.de. Vivie-Riedle, J. Chem. Phys. 121, 12158 (2004). 10.1063/1.1818131
D. Babikov, J. Chem. Phys. 121, 7577 (2004). 10.1063/1.1791635
B. Korff, U. Troppmann, K. Kompa, and R.de. Vivie-Riedle, J. Chem. Phys. 123, 244509 (2005). 10.1063/1.2141615
U. Troppmann and R. de Vivie-Riedle, J. Chem. Phys. 122, 154105 (2005). 10.1063/1.1881112
U. Troppmann, C. Gollub, and R. de Vivie-Riedle, New J. Phys. 8, 100 (2006). 10.1088/1367-2630/8/6/100
Y. Ohtsuki, Chem. Phys. Lett. 404, 126 (2005). 10.1016/j.cplett.2005.01.080
T. Cheng and A. Brown, J. Chem. Phys. 124, 144109 (2006). 10.1063/1.2187977
M. Zhao and D. Babikov, J. Chem. Phys. 125, 024105 (2006). 10.1063/1.2220039
D. Sugny, C. Kontz, M. Ndong, Y. Justum, G. Dive, and M. Desouter-Lecomte, Phys. Rev. A 74, 043419 (2006). 10.1103/PhysRevA.74.043419
M. Ndong, L. Bomble, D. Sugny, Y. Justum, and M. Desouter-Lecomte, Phys. Rev. A 76, 043424 (2007). 10.1103/PhysRevA.76.043424
M. Ndong, D. Lauvergnat, X. Chapuisat, and M. Desouter-Lecomte, J. Chem. Phys. 126, 244505 (2007). 10.1063/1.2743429
D. Weidinger and M. Gruebele, Mol. Phys. 105, 1999 (2007). 10.1080/00268970701504335
M. Zhao and D. Babikov, J. Chem. Phys. 126, 204102 (2007). 10.1063/1.2736693
M. Tsubouchi and T. Momose, Phys. Rev. A 77, 052326 (2008). 10.1103/PhysRevA.77.052326
L. Bomble, D. Lauvergnat, F. Remacle, and M. Desouter-Lecomte, J. Chem. Phys. 128, 064110 (2008). 10.1063/1.2806800
Y. Y. Gu and D. Babikov, J. Chem. Phys. 131, 034306 (2009). 10.1063/1.3152487
R. R. Zaari and A. Brown, J. Chem. Phys. 132, 014307 (2009). 10.1063/1.3290957
D. Sugny, L. Bomble, T. Ribeyre, O. Dulieu, and M. Desouter-Lecomte, Phys. Rev. A 80, 042325 (2009). 10.1103/PhysRevA.80.042325
L. Bomble, D. Lauvergnat, F. Remacle, and M. Desouter-Lecomte, Phys. Rev. A 80, 022332 (2009). 10.1103/PhysRevA.80.022332
L. Bomble, D. Lauvergnat, F. Remacle, and M. Desouter-Lecomte, Phys. Chem. Chem. Phys. 12, 15628 (2010). 10.1039/c003687k
Y. Ohtsuki, New J. Phys. 12, 045002 (2010). 10.1088/1367-2630/12/4/045002
K. Mishima and K. Yamashita, Chem. Phys. 376, 63 (2010). 10.1016/j.chemphys.2009.11.007
R. R. Zaari and A. Brown, J. Chem. Phys. 135, 044317 (2011). 10.1063/1.3617248
S. Sharma and H. Singh, Chem. Phys. 390, 68 (2011). 10.1016/j.chemphys.2011.10.011
D. DeMille, Phys. Rev. Lett. 88, 067901 (2002). 10.1103/PhysRevLett.88.067901
L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, New J. Phys. 11, 055049 (2009). 10.1088/1367-2630/11/5/055049
S. F. Yelin, K. Kirby, and R. Côté, Phys. Rev. A 74, 050301 (2006). 10.1103/PhysRevA.74.050301
E. Kutznetsova, R. Côté, K. Kirby, and S. F. Yelin, Phys. Rev. A 78, 012313 (2008). 10.1103/physreva.78.012313
E. Charron, P. Milman, A. Keller, and O. Atabek, Phys. Rev. A 77, 039907 (2008). 10.1103/physreva.77.039907
L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, Phys. Rev. A 82, 062323 (2010). 10.1103/PhysRevA.82.062323
K. Mishima and K. Yamashita, Chem. Phys. 361, 106 (2009). 10.1016/j.chemphys.2009.05.014
K. Mishima and K. Yamashita, J. Chem. Phys. 130, 034108 (2009). 10.1063/1.3062860
Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, J. Chem. Phys. 135, 154102 (2011). 10.1063/1.3649949
J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, J. Chem. Phys. 138, 024104 (2013). 10.1063/1.4774058
C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, Phys. Rev. A 89, 022317 (2014). 10.1103/PhysRevA.89.022317
J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995). 10.1103/PhysRevLett.74.4091
D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998). 10.6028/jres.103.019
C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 75, 4714 (1995). 10.1103/PhysRevLett.75.4714
L.-M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010). 10.1103/RevModPhys.82.1209
C. Monroe and J. Kim, Science 339, 164 (2013). 10.1126/science.1231298
T. P. Harty, D. T. C. Allcock, C. J. Balance, L. Guidoni, H. A. Janachek, N. M. Linke, D. N. Stacey, and D. M. Lucas, Phys. Rev. Lett. 113, 220501 (2014). 10.1103/PhysRevLett.113.220501
G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, and L.-M. Duan, Europhys. Lett. 86, 60004 (2009). 10.1209/0295-5075/86/60004
M. Zhao and D. Babikov, Phys. Rev. A 77, 012338 (2008). 10.1103/PhysRevA.77.012338
L. Wang and D. Babikov, Phys. Rev. A 83, 022305 (2011). 10.1103/PhysRevA.83.022305
L. Wang and D. Babikov, J. Chem. Phys. 137, 064301 (2012). 10.1063/1.4742309
Q. Chen, K. Hai, and W. Hai, J. Phys. A: Math. Theor. 43, 455302 (2010). 10.1088/1751-8113/43/45/455302
G. Benenti and G. Strini, Am. J. Phys. 76, 657 (2008). 10.1119/1.2894532
M. D. Feit, Jr., J. A. Fleck, and A. Steiger, J. Comput. Phys. 47, 412 (1982). 10.1016/0021-9991(82)90091-2
D. Lu, N. Xu, R. Xu, H. Chen, J. Gong, X. Peng, and J. Du, Phys. Rev. Lett. 107, 020501 (2011). 10.1016/0021-9991(82)90091-2
D. Lu, B. Xu, N. Xu, Z. Li, H. Chen, X. Peng, R. Xu, and J. Du, Phys. Chem. Chem. Phys. 14, 9411 (2012). 10.1039/c2cp23700h
H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984). 10.1063/1.448136
S. Schneider and G. J. Milburn, Phys. Rev. A 59, 3766 (1999). 10.1103/PhysRevA.59.3766
Q. A. Turchette, D. Kielpinski, B. E. King, D. Leibfried, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, Phys. Rev. A 61, 063418 (2000). 10.1103/PhysRevA.61.063418
A. Safavi-Naini, P. Rabl, P. F. Weck, and H. R. Sadeghpour, Phys. Rev. A 84, 023412 (2011). 10.1103/PhysRevA.84.023412
A. Safavi-Naini, E. Kim, P. F. Weck, P. Rabl, and H. R. Sadeghpour, Phys. Rev. A 87, 023421 (2011). 10.1103/PhysRevA.87.023421
B. B. Blinov, D. L. Moehring, L.-M. Duan, and C. Monroe, Nature 428, 153 (2004). 10.1038/nature02377
L. Deslauriers, S. Olmschenk, D. Stick, W. Heisinger, J. Sterk, and C. Monroe, Phys. Rev. Lett. 97, 103007 (2006). 10.1103/PhysRevLett.97.103007
See supplementary material at http://dx.doi.org/10.1063/1.4916355 E-JCPSA6-142-042513 for the eigenenergies and for the dipole matrix. 10.1007/BF01608499
G. Lindblad, Commun. Math. Phys. 48, 119 (1976). 10.1007/BF01608499
W. Zhu and H. Rabitz, J. Chem. Phys. 118, 6751 (2003). 10.1063/1.1559484
F. Shuang and H. Rabitz, J. Chem. Phys. 124, 154105 (2006). 10.1063/1.2186644
H. F. Trotter, Proc. Am. Math. Soc. 10, 545 (1959). 10.1090/S0002-9939-1959-0108732-6
J. L. Walsh, Am. J. Math. 45, 5 (1923). 10.2307/2387224
J. Welch, D. Greenbaum, S. Mostame, and A. Aspuru-Guzik, New J. Phys. 16, 033040 (2014). 10.1088/1367-2630/16/3/033040
J. P. Palao and R. Kosloff, Phys. Rev. Lett. 89, 188301 (2002). 10.1103/PhysRevLett.89.188301
J. P. Palao and R. Kosloff, Phys. Rev. A 68, 062308 (2003). 10.1103/PhysRevA.68.062308
W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998). 10.1063/1.475576
A. Jaouadi, E. Barrez, Y. Justum, and M. Desouter-Lecomte, J. Chem. Phys. 139, 014310 (2013). 10.1063/1.4812317
Y. Ohtsuki, W. Zhu, and H. Rabitz, J. Chem. Phys. 110, 9825 (1999). 10.1063/1.478036
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007). 10.1103/PhysRevLett.77.4281
D. Leibfried, D. M. Meekhof, B. E. King, C. Monroe, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 77, 4281 (1996). 10.1103/PhysRevLett.77.4281
D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 76, 1796 (1996). 10.1103/PhysRevLett.76.1796
J. C. Retanal and Z. Zagury, Phys. Rev. A 55, 2387 (1997). 10.1103/physreva.55.2387
G. Huber, F. Schmidt-Kaler, S. Deffner, and E. Lutz, Phys. Rev. Lett. 101, 070403 (2008). 10.1103/PhysRevLett.101.070403
X.-B. Zou, J. Kim, and H.-W. Lee, Phys. Rev. A 63, 065801 (2001). 10.1103/PhysRevA.63.065801
E. Solano, P. Milman, R. L. de Matos Filho, and Z. Zagury, Phys. Rev. A 62, 021401(R) (2000). 10.1103/PhysRevA.62.021401
D. Liebfried et al., Nature 438, 639 (2005). 10.1038/nature04251
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.