Keywords :
natural selection; sexual selection; predation; predatory risk; evolution; secondary sexual traits; epigamic characters; ornaments; ornamentation; phenotypic plasticity; polymorphism; polyphenism; heterochrony; facultative paedomorphosis; alterantive phenotypes; amphibian; palmate newt; Lissotriton helveticus; Carassius auratus; goldfish; seasonal traits; Fish introduction; introduced species; anti-predator defense
Abstract :
[en] Secondary sexual traits may evolve under the antagonistic context of sexual and natural selection. In some polymorphic species, these traits are only expressed during the breeding period and are differently expressed in alternative phenotypes. However, it is unknown whether such phenotypes exhibit phenotypic plasticity of seasonal ornamentations in response to environmental pressures such as in the presence of fish (predation risk). This is an important question to understand the evolution of polyphenisms. We used facultative paedomorphosis in newts as a model system because it involves the coexistence of paedomorphs that retain gills in the adult stage with metamorphs that have undergone metamorphosis, but also because newts exhibit seasonal sexual traits. Our aim was therefore to determine the influence of fish on the development of seasonal ornamentation in the two phenotypes of the palmate newt (Lissotriton helveticus). During the entire newt breeding period, we assessed the importance of phenotype and fish presence with an information-theoretic approach. Our results showed that paedomorphs presented much less developed ornamentation than metamorphs and those ornamentations varied over time. Fish inhibited the development of sexual traits but differently between phenotypes: in contrast to metamorphs, paedomorphs lack the phenotypic plasticity of sexual traits to environmental risk. This study points out that internal and external parameters act in complex ways in the expression of seasonal sexual ornamentations and that similar environmental pressure can induce a contrasted evolution in alternative phenotypes.
Scopus citations®
without self-citations
8