N.K.Aaronson, S.Ahmedzai, B.Bergman, M.Bullinger, A.Cull, N.J.Duez, A.Filiberti, H.Flechtner, D.B.Fleishman, J.C.J.M.De Haes, S.Kaasa, M.Klee, D.Osoba, D.Razavi, P.Rofe, S.Schraub, K.Sneeuw, M.Sullivan, and F.Takeda, The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology, J. Natl. Cancer Inst. 85 (1993), pp. 365–376. doi: 10.1093/jnci/85.5.365
A.Albert and J.A.Anderson, On the existence of maximum likelihood estimates in logistic regression models, Biometrika 71 (1984), pp. 1–10. doi: 10.1093/biomet/71.1.1
R.Bender and U.Grouwen, Using binary logistic regression models for ordinal data with non-proportional odds, J. Clin. Epidemiol. 51(10) (1998), pp. 809–816. doi: 10.1016/S0895-4356(98)00066-3
S.van Buuren, Multiple imputation of discrete and continuous data by full conditional specification, Stat. Methods Med. Res. 16 (2007), pp. 219–242. doi: 10.1177/0962280206074463
A.F.Donneau, M.Mauer, P.Lambert, G.Molenberghs, and A.Albert, Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings, J. Biopharm. Stat. (in press), doi:10.1080/10543406.2014.920864.
A.F.Donneau, M.Mauer, G.Molenberghs, and A.Albert, A simulation study comparing multiple imputation methods for incomplete longitudinal ordinal data, Commun. Stat. Simul. Comput. (in press), 10.1080/03610918.2013.818690
M.Gameroff, Using the proportional odds model for health-related outcomes: Why, When, and How with various SAS procedures, Paper presented at SAS Users Group International, thirty annual conference, Philadelphia, PA, 2005.
J.H.Goodnight, A tutorial on the SWEEP operator, Am. Stat. 33 (1979), pp. 149–158.
J.W.Graham, A.E.Olchowski, and T.D.Gilreath, How many imputations are really needed? Some practical clarifications of multiple imputation theory, Prevent. Sci. 8 (2007), pp. 206–213. doi: 10.1007/s11121-007-0070-9
N.A.Ibrahim and S.Suliadi, Generating correlated discrete ordinal data using R and SAS IML, Comput. Methods Prog. Biomed. 104(3) (2011), pp. 122–132. doi: 10.1016/j.cmpb.2011.06.003
A.J.Lee, Some simple methods for generating correlated categorical variates, Comput. Stat. Data Anal. 26 (1997), pp. 133–148. doi: 10.1016/S0167-9473(97)00030-3
K.-H.Li, X.-L.Meng, T.Raghunathan, and D.B.Rubin, Significance levels from repeated p-values with multiply-imputed data, Stat. Sin. 1 (1991), pp. 65–92.
K.-Y.Liang and S.L.Zeger, Longitudinal data analysis using generalized linear models, Biometrika 73 (1986), pp. 13–22. doi: 10.1093/biomet/73.1.13
S.R.Lipsitz, K.Kim, and L.Zhao, Analysis of repeated categorical data using generalized estimating equations, Stat. Med. 13(11) (1994), pp. 1149–1163. doi: 10.1002/sim.4780131106
R.J.A.Little, Modelling the drop-out mechanism in repeated measures studies, J. Am. Stat. Assoc. 90 (1995), pp. 1112–1121. doi: 10.1080/01621459.1995.10476615
R.J.A.Little and D.B.Rubin, Statistical Analysis with Missing Data, Wiley, New York, 1987.
P.McCullagh, Regression models for ordinal data (with discussion), J. R. Stat. Soc. Ser. B 42 (1980), pp. 109–142.
B.Peterson and F.Harrell, Partial proportional odds models for ordinal response variables, J. R. Stat. Soc. Ser. C 39(2) (1990), pp. 205–217.
J.M.Robins and A.Rotnitzky, Semiparametric efficiency in multivariate regression models with missing data, J. Am. Stat. Assoc. 90 (1995), pp. 122–129. doi: 10.1080/01621459.1995.10476494
J.M.Robins, A.Rotnitzky, and L.P.Zhao, Analysis of semiparametric regression models with missing data, J. Am. Stat. Assoc. 90 (1995), pp. 106–121. doi: 10.1080/01621459.1995.10476493
A.Rotnitzky and N.P.Jewell, Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data, Biometrika 77 (1990), pp. 485–497. doi: 10.1093/biomet/77.3.485
D.B.Rubin, Inference and missing data, Biometrika 63 (1976), pp. 581–592. doi: 10.1093/biomet/63.3.581
D.B.Rubin, Multiple Imputations for Nonresponse in Survey, Wiley, New York, 1987.
T.Stiger, H.Barnhart, and J.Williamson, Testing proportionality in the proportional odds model fitted with GEE, Stat. Med. 18 (1999), pp. 1419–1433. doi: 10.1002/(SICI)1097-0258(19990615)18:11<1419::AID-SIM127>3.0.CO;2-Q
M.Stokes, C.Davis, and G.Koch, Categorical Data Analysis Using the SAS System, 2nd ed., SAS Institute Inc., Cary, NC, 2000.
R.Stupp, W.P.Mason, M.J.van den Bent, M.Weller, B.Fisher, M.J.B.Taphoorn, K.Belanger, A.A.Brandes, C.Marosi, U.Bogdahn, J.Curschmann, R.C.Janzer, S.K.Ludwin, T.Gorlia, A.Allgeier, D.Lacombe, J.G.Cairncross, E.Eisenhauer, and R.O.Mirimanoff, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med. 352(10) (2005), pp. 987–996. doi: 10.1056/NEJMoa043330
M.A.Tanner and W.H.Wong, The calculation of posterior distribution by data augmentation, J. Am. Stat. Assoc. 82 (1987), pp. 528–550. doi: 10.1080/01621459.1987.10478458
M.J.Taphoorn, R.Stupp, C.Coens, D.Osoba, R.Kortmann, M.J.van den Bent, W.Mason, R.O.Mirimanoff, B.G.Baumert, E.Eisenhauer, P.Forsyth, and A.Bottomley, Health-related quality of life in patients with glioblastoma: A randomized controlled trial, Lancet Oncol. 6(12) (2005), pp. 937–944. doi: 10.1016/S1470-2045(05)70432-0
S.H.Walker and D.B.Duncan, Estimation of the probability of an event as a function of several independent variables, Biometrika 54 (1967), pp. 167–178. doi: 10.1093/biomet/54.1-2.167
I.R.White, P.Royston, and A.M.Wood, Multiple imputation using chained equations: Issues and guidance for practice, Stat. Med. 30(4) (2011), pp. 377–399. doi: 10.1002/sim.4067
S.L.Zeger and K.-Y.Liang, Longitudinal data analysis for discrete and continuous outcomes, Biometrics 42 (1986), pp. 121–130. doi: 10.2307/2531248