[en] In this paper, we emphasize three different techniques for the growth of fractal trees with a desired fractal dimension D-f. The three different growths are due to the influence of (i) stretched branches, (ii) dead ends, or (iii) a variable branching rate. Several examples are given. We point out that geometrical and physical properties (skeleton dimension, percolation exponents, self-avoiding walk) of fractal tress depend strongly on their type. The most striking result is that the critical exponents at the percolation transition are nonuniversal since they depend on the tree type. The critical exponents depend on D-f for trees of types (ii) and (iii).
Disciplines :
Physics
Author, co-author :
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Ausloos, Marcel ; Université de Liège - ULiège > Département de physique > Physique statistique appliquée et des matériaux - S.U.P.R.A.S.
Language :
English
Title :
Construction and properties of fractal trees with tunable dimension: The interplay of geometry and physics
Publication date :
January 1997
Journal title :
Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
ISSN :
1063-651X
eISSN :
1095-3787
Publisher :
American Physical Society, United States - Maryland
H. Stanley, D. Stauffer, J. Kertesz, and H. Hermann, Phys. Rev. Lett.59, 2326 (1987).
B. Derrida and G. Weisburch, Europhys. Lett.4, 657 (1987).
A M. Mariz, H J. Hermann, and L. de Arcangelis, J. Stat. Phys.59, 1043 (1990).
N. Jan and L. de Arcangelis, in Annual Review of Computer Physics, edited by D. Stauffer (World Scientific, Singapore, 1994), Vol. 1, p. 1.
P. Grassberger, J. Stat. Phys.79, 13 (1995).
H. Hinrichsen, S. Weitz, and E. Domany (unpublished).
For Metropolis dynamics the transition probabilities are different.
P. Grassberger, J. Phys. A28, L 67 (1995).JPHAC5
T. Vojta, Phys. Rev. E55, 5157 (1997).PLEEE8
U. M. S. Costa, J. Phys. A20, L583 (1987).JPHAC5
G. La Caer, J. Phys. A22, L647 (1989); JPHAC5
Physica A159, 329 (1989).
E. Domany and W. Kinzel, Phys. Rev. Lett.53, 311 (1984).
P. Grassberger and A. de la Torre, Ann. Phys. (N.Y.)122, 373 (1979).APNYA6
I. Jensen, Phys. Rev. Lett.77, 4988 (1996).
P. Grassberger, F. Krause, and T. von der Twer, J. Phys. A17, L105 (1984); JPHAC5
P. Grassberger, 22, L1103 (1984).
N. Menyhárd, J. Phys. A27, 6139 (1994); JPHAC5
B. Menyhárd and G. Ódor, 29, 7739 (1996). The kinetic Ising models introduced in these papers have mixed zero- and infinite-temperature dynamics, and are different from the usual Ising model at finite temperature discussed in the present work.
M H. Kim and H. Park, Phys. Rev. Lett.73, 2579 (1994);
H. Park, M H. Kim, and H. Park, Phys. Rev. E52, 5664 (1995).PLEEE8
I. Jensen, J. Phys. A26, 3921 (1993); JPHAC5
D. ben-Avraham, F. Leyvraz, and S. Redner, Phys. Rev. E50, 1843 (1994); PLEEE8
I. Jensen, 50, 3623 (1994);
D. Zhong and D. ben-Avraham, Phys. Lett. A209, 333 (1995).
H. Hinrichsen, Phys. Rev. E55, 219 (1997).PLEEE8
J. Cardy and U. C. Täuber, Phys. Rev. Lett.77, 4780 (1996).