No full text
Article (Scientific journals)
Geometric and healing laws in simple stochastic models of fracture in a sputtering process
Dhulst, R.; Vandewalle, Nicolas; Ausloos, Marcel
1997In Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 55 (1), p. 189-193
Peer Reviewed verified by ORBi
 

Files


Full Text
No document available.

Send to



Details



Abstract :
[en] We investigated two simple models of two-dimensional square lattice fracture under sputtering process conditions extending a previously studied model by Ausloos and Kowalski [Phys. Rev. B 45, 12 830 (1992)]. The models differ by the particle displacement rules during the fracture. Healing of the medium is observed in both models. This effect implies the formation of several thresholds during sputtering process fracture. They are distributed as a size-dependent power law. An avalanche like exponent is also obtained. We study this phenomenology within scaling arguments of classical percolation theory and mean-field arguments.
Disciplines :
Physics
Author, co-author :
Dhulst, R.
Vandewalle, Nicolas  ;  Université de Liège - ULiège > Département de physique > Physique statistique
Ausloos, Marcel ;  Université de Liège - ULiège > Département de physique > Physique statistique appliquée et des matériaux - S.U.P.R.A.S.
Language :
English
Title :
Geometric and healing laws in simple stochastic models of fracture in a sputtering process
Publication date :
January 1997
Journal title :
Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
ISSN :
1063-651X
eISSN :
1095-3787
Publisher :
American Physical Society, United States - Maryland
Volume :
55
Issue :
1
Pages :
189-193 Part A
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 07 August 2009

Statistics


Number of views
49 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
3

Bibliography


Similar publications



Contact ORBi