[en] We have numerically and theoretically investigated a simple model for two-component spreading phenomena in two different growth geometries (i.e., spreading confined in a half space and spreading in a free space). The criticality of the domain substructures unexpectedly depends on the considered geometry. This is understood by simple arguments of domain-wall particle diffusion and annihilation. We derive a relationship between the critical exponents chi and alpha for domain-wall spatial distributions in different geometries. The latter relationship is numerically verified in two, three and four dimensions.
Disciplines :
Physics
Author, co-author :
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Ausloos, Marcel ; Université de Liège - ULiège > Département de physique > Physique statistique appliquée et des matériaux - S.U.P.R.A.S.
Language :
English
Title :
Two-component spreading phenomena: Why the geometry makes the criticality
Publication date :
September 1996
Journal title :
Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
ISSN :
1063-651X
eISSN :
1095-3787
Publisher :
American Physical Society, College Park, United States - Maryland