Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptionmetry among elderly people: a cross-sectional study
[en] BACKGROUND: Besides magnetic resonance imaging, dual energy X-ray absorptiometry (DXA) seems the most reliable tool to evaluate body composition and is often considered as the gold standard in clinical practice. Bioelectrical impedance analysis (BIA) could provide a simpler, portative, and less expensive alternative. Because the body composition assessment by BIA is device-dependent, the aim of this study was to appraise the concordance between the specific bioelectrical impedance device InBody S10 and DXA for the body composition evaluation. METHODS: Body composition, included appendicular lean mass divided by height squared (ALM/ht2) was measured by DXA (Hologic QDR Discovery device) and by BIA (InBody S10 Biospace device). Agreement between tools was assessed by means of the Bland Altman method and reliability was determined using the IntraClass Coefficient (ICC). ICC was also computed to assess the reliability of the test-retest performed by the same operator or by two different ones. RESULTS: A total of 219 subjects were enrolled in this study (mean age: 43.7 +/- 19.1 years old, 51.6% of women). For the ALM/ht2, reliability of the test-retest of the BIA was high with an ICC of 0.89 (95%CI: 0.86-0.92) when performed by the same operator and an ICC of 0.77 (95%CI: 0.72-0.82) when performed by two different operators. Agreement between ALM/ht2 assessed by DXA and BIA was low (ICC = 0.37 (95%CI: 0.25-0.48)). Mean ALM/ht2 was 9.19 +/- 1.39 kg/m2 with BIA and 7.34 +/- 1.34 kg/m2 with DXA, (p < 0001). A formula developed using a multiple regression analysis, and taking into account muscle mass assessed by BIA, as well as sex and body mass index, explains 89% of the ALM/ht2 assessed by DXA. CONCLUSIONS: Although our results show that the measure of ALM/ht2 by BIA is reliable, the agreement between DXA and BIA is low. Indeed, BIA seems to overestimate ALM/ht2 compared to DXA and, consequently, it is important to use an adapted formula to obtain measurement of the appendicular lean mass by BIA close to that measured by DXA.
Disciplines :
General & internal medicine
Author, co-author :
Buckinx, Fanny ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Reginster, Jean-Yves ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Dardenne, Nadia ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Croisier, Jean-Louis ; Université de Liège - ULiège > Département des sciences de la motricité > Kinésithérapie générale et réadaptation
Kaux, Jean-François ; Université de Liège - ULiège > Département des sciences de la motricité > Département des sciences de la motricité
Beaudart, Charlotte ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Slomian, Justine ; Université de Liège - ULiège > Département des sciences de la santé publique > Epidémiologie clinique
Bruyère, Olivier ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Language :
English
Title :
Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptionmetry among elderly people: a cross-sectional study
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Karelis AD, Chamberland G, Aubertin-Leheudre M, Duval C, Ecological mobility in Aging and Parkinson (EMAP) group. Validation of a portable bioelectrical impedance analyzer for the assessment of body composition. Appl Physiol Nutr Metab. 2013;38(1):27-32.
Stenver DI, Gotfredsen A, Hilsted J, Nielsen B. Body composition in hemodialysis patients measured by dual-energy X-ray absorptiometry. Am J Nephrol. 1995;15(2):105-10.
Pateyjohns IR, Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity (Silver Spring). 2006;14(11):2064-70.
Fowke JH, Matthews CE. PSA and body composition by Dual X-ray Absorptiometry (DXA) in NHANES. Prostate. 2010;70(2):120-5.
Thibault R, Pichard C. The evaluation of body composition: a useful tool for clinical practice. Ann Nutr Metab. 2012;60(1):6-16.
Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J. The official positions of the international society for clinical densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom. 2013;16(4):520-36.
Salamat MR, Shanei A, Khoshhali M, Salamat AH, Siavash M, Asgari M. Use of conventional regional DXA scans for estimating whole body composition. Arch Iran Med. 2014;17(10):674-8.
Visser M, Fuerst T, Lang T, Salamone L, Harris TB. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, aging, and body composition study - dual-energy x-ray absorptiometry and body composition working group. J Appl Physiol (1985). 1999;87(4):1513-20.
Haapala I, Hirvonen A, Niskanen L, Uusitupa M, Kröger H, Alhava E, et al. Anthropometry, bioelectrical impedance and dual-energy X-ray absorptiometry in the assessment of body composition in elderly Finnish women. Clin Physiol Funct Imaging. 2002;22(6):383-91.
Nichols J, Loftin M, Stewart D, Lohman T, Tuuri G, Ring K, et al. Validation of bioelectrical impedance analysis (BIA) for estimation of body composition in Black, White and Hispanic adolescent girls. Int J Body Compos Res. 2006;4(4):161-7.
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older Peopl. Age Ageing. 2010;39(4):412-23.
Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham study. J Gerontol A Biol Sci Med Sci. 2013;68(2):168-74.
Tataranni PA, Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995;62(4):730-4.
Savva C, Giakas G, Efstathiou M, Karagiannis C. Test-retest reliability of handgrip strength measurement using a hydraulic hand dynamometer in patients with cervical radiculopathy. J Manipulative Physiol Ther. 2014;37(3):206-10.
Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423-9.
Watanabe T, Owashi K, Kanauchi Y, Mura N, Takahara M, Ogino T. The short-term reliability of grip strength measurement and the effects of posture and grip span. J Hand Surg Am. 2005;30(3):603-9.
Park MY, Kim SH, Cho YJ, Chung RH, Lee KT. Association of leisure time physical activity and metabolic syndrome over 40 years. Korean J Fam Med. 2014;35(2):65-73.
Taylor HL, Jacobs Jr DR, Schucker B, Knudsen J, Leon AS, Debacker G. A questionnaire for the assessment of leisure time physical activities. J Chronic Dis. 1978;31(12):741-55.
Bosquet L, Maquet D, Forthomme B, Nowak N, Lehance C, Croisier JL. Effect of the lengthening of the protocol on the reliability of muscle fatigue indicators. Int J Sports Med. 2010;31(2):82-8.
Jackson AS, Pollock ML, Graves JE, Mahar MT. Reliability and validity of bioelectrical impedance in determining body composition. J Appl Physiol (1985). 1988;64(2):529-34.
Kjellin L, Sjodahl RC, Eklund M. Activity-based assessment (BIA)-inter-rater reliability and staff experiences. Scand J Occup Ther. 2008;15(2):75-81.
King S, Wilson J, Kotsimbos T, Bailey M, Nyulasi I. Body composition assessment in adults with cystic fibrosis: comparison of dual-energy X-ray absorptiometry with skinfolds and bioelectrical impedance analysis. Nutrition. 2005;21(11-12):1087-94.
Ziai S, Coriati A, Chabot K, Mailhot M, Richter MV, Rabasa-Lhoret R. Agreement of bioelectric impedance analysis and dual-energy X-ray absorptiometry for body composition evaluation in adults with cystic fibrosis. J Cyst Fibros. 2014;13(5):585-8.
Savastano S, Belfiore A, Di Somma C, Mauriello C, Rossi A, Pizza G, et al. Validity of bioelectrical impedance analysis to estimate body composition changes after bariatric surgery in premenopausal morbidly women. Obes Surg. 2010;20(3):332-9.
Kim M, Kim H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur J Clin Nutr. 2013;67(4):395-400.
Lloret Linares C, Ciangura C, Bouillot JL, Coupaye M, Declèves X, Poitou C, et al. Validity of leg-to-leg bioelectrical impedance analysis to estimate body fat in obesity. Obes Surg. 2011;21(7):917-23.
Kim JH, Choi SH, Lim S, Kim KW, Lim JY, Cho NH, et al. Assessment of appendicular skeletal muscle mass by bioimpedance in older community-dwelling Korean adults. Arch Gerontol Geriatr. 2014;58(3):303-7.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.