pedotransfer function; field capacity; wilting point
Abstract :
[en] Testing the efficiency of a pedotransfer function (PTF) outside of its development data-set is
one of the best ways for assessing its robustness. An important question which remains
unanswered is how transposable are PTFs to other agropedoclimatic contexts? Models
developed and validated in a particular pedoclimatic context have been relatively little
tested in other contexts. Particularly, no studies have been conducted until now to evaluate
the PTFs for Algerian soils. In this study, eight (8) PTFs most frequently cited were considered.
We used them to evaluate soil water retention at field capacity (FC) and wilting point
(WP) on a set of 134 samples collected in the low Cheliff. The calculated Akaike information
criterion and root mean square errors values showed that the Rawls, and Ghorbani Dashtaki
et Homaee type 1 models were the best in estimation of soil water retention at FC
(–709.795, 0.070 cm3 cm−3) and WP (–733.480, 0.064 cm3 cm−3). The poorer performances
were presented by the PTFs developed on soils from Europe or United States where the
organic matter values were much higher than the Algerian soils. However, the transposability
of the PTFs formed from data spread from a wider area, produce more accurate
predictions than those built from local data.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Touil, Sami; Superior National School of Agronomy, El Harrach, Algiers, Algeria > Rural Engineering Department
Degré, Aurore ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Systèmes Sol-Eau
Chabaca, Mohamed Nacer; Superior National School of Agronomy, El Harrach, Algiers, Algeria > Rural Engineering Department
Language :
English
Title :
Transposability of pedotransfer functions for estimating water retention of Algerian soils
J.Bouma, Using soil survey data for quantitative land evaluation, Adv. Soil Sci. 9 (1989) 177–213.10.1007/978-1-4612-3532-3
M.van GenuchtenM.Th., F.J.Leij, On estimating the hydraulic properties of unsaturated soils, in: M.van GenuchtenM.Th., F.J.Leij, L.J.Lund (Eds.), Proceedings of International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, 11–13 October, University of California, Riverside, CA, 1992, pp. 1–14.
J.Williams, P.J.Ross, K.L.Bristow, Prediction of the Campbell water retention function from texture, structure and organic matter, in: M.van GenuchtenM.Th., F.J.Leij, L.J.Lund (Eds.), Proceedings of International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Riverside, CA, 11–13 October, 1989, University of California, Riverside, CA, 1992, pp. 427–442.
O.Tietje, M.Tapkenhinrichs, Evaluation of pedotransfer functions, Soil Sci. Soc. Am. J. 57 (1993) 1088–1095.10.2136/sssaj1993.03615995005700040035x
J.S.Kern, Evaluation of soil water retention models based on basic soil physical properties, Soil Sci. Soc. Am. J. 59 (1995) 1134–1141.10.2136/sssaj1995.03615995005900040027x
Y.PachepskyYa., W.J.Rawls, D.Gimenez, J.P.C.Watt, Use of soil penetration resistance and group method data handling to improve soil water retention estimates, Soil Tillage Res. 49 (1998) 117–126.10.1016/S0167-1987(98)00168-8
A.Bruand, P.Quétin, O.Duval, H.Gaillard, L.Raison, Significance of the soil fabric on the water retention properties: Example of clayey soils and consequences on PTFs, in: The Use of Pedotransfer in Soil Hydrology Research in Europe, in: A.Bruand, O.Duval, H.Wösten, A.Lilly (Eds.), Proceedings of the Second Workshop of the Project ‘Using Existing Soil Data to Derive Hydraulic Parameters for Simulation Modeling in Environmental Studies and in Land Use Planning’, Orléans, France, October 10–12, 1996, INRA Orléans and EC/JRC Ispra, 1997, pp. 81–88.
G.Bastet, A.Bruand, M.Voltz, M.Bornand, P.Quétin, Performance of available pedotransfer functions for predicting the water retention properties of french soils, in: M.van GenuchtenM.Th., F.J.Leij, L.Wu (Eds.), Proceedings International Workshop on Characterization and Measurement of the Hydraulic Properties of Unsaturated Media, October 22–24, 1997, Riverside, CA, 1999, pp. 981–991.
M.G.Schaap, F.J.Leij, M.van GenuchtenM.Th, Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol. 251 (2001) 163–176.10.1016/S0022-1694(01)00466-8
W.M.Cornelis, J.Ronsyn, M.V.Meirvenne, R.Hartmann, Evaluation of pedotransfer functions for predicting the soil moisture retention curve, Soil Sci. Soc. Am. J. 65 (2001) 638–648.10.2136/sssaj2001.653638x
W.M.Cornelis, M.Khlosi, R.Hartmann, M.Van Meirvenne, B.De Vos, Comparison of unimodal analytical expressions for the soil–water retention curve, Soil Sci. Soc. Am. J. 69 (2005) 1902–1911.10.2136/sssaj2004.0238
J.H.M.Wösten, Y.A.Pachepsky, W.J.Rawls, Pedotransfer functions: Bridging the gap between available basic soil data and missing soil hydraulic characteristics, J. Hydrol. 251 (2001) 123–150.10.1016/S0022-1694(01)00464-4
M.Donatelli, J.H.M.Wösten, G.Belocchi, M.Acutis, A.Nemes, G.Fila, Methods to evaluate pedotransfer functions, in: Y.Pachepsky, W.J.Rawls (Eds.), Developments in Soil Science, vol. 30, Elsevier, Amsterdam, 2004, pp. 357–411.
A.Nemes, M.G.Schaap, J.H.M.Wösten, Functional evaluation on of pedotransfer functions derived from different scales of data collection, Soil Sci. Soc. Am. J. 67 (2003) 1093–1102.10.2136/sssaj2003.1093
J.Tomasella, Y.A.Pachepsky, S.Crestana, W.J.Rawls, Comparison of two techniques to develop pedotransfer functions for water retention, Soil Sci. Soc. Am. J. 67 (2003) 1085–1092.10.2136/sssaj2003.1085
M.Van GenuchtenM.Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (1980) 892–898.10.4141/cjss82-038
W.J.Rawls, D.L.Brakensiek, Estimating soil water retention from soil properties, J. Irrig. Drain. Div. Am. Soc. Civ. Eng. 108 (1982) 166–171.
W.E.Puckett, J.H.Dane, B.F.Hajek, Physical and mineralogical data to determine soil hydraulic properties, Soil Sci. Soc. Am. J. 49 (1985) 831–836.10.2136/sssaj1985.03615995004900040008x
R.H.McCuen, W.J.Rawls, D.L.Brakensiek, Statistical analysis of the Brooks–Corey and the Green–Ampt parameters across soil textures, Water Resour. Res. 17 (1981) 1005–1013.10.1029/WR017i004p01005
B.J.Cosby, G.M.Hornberger, R.B.Clapp, T.R.Ginn, A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils, Water Resour. Res. 20 (1984) 682–690.10.1029/WR020i006p00682
J.H.M.Wösten, M.van GenuchtenM.Th., Using texture and other soil properties to predict the unsaturated soil hydraulic functions, Soil Sci. Soc. Am. J. 52 (1988) 1762–1770.10.2136/sssaj1988.03615995005200060045x
H.Vereecken, J.Maes, J.Feyen, P.Darius, Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content, Soil Sci. 148 (1989) 389–403.10.1097/00010694-198912000-00001
S.Ghorbani DashtakiSh., M.Homaee, Using geometric mean particle diameter to derive point and continuous pedotransfer functions, in: N.Whrle, M.Scheurer (Eds.), EuroSoil, September 4–12, 2004, Freiburg, Germany, 10(30) (2004) 1–10.
G.S.Campbell, A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci. 117 (1974) 311–314.10.1097/00010694-197406000-00001
K.E.Saxton, W.J.Rawls, J.C.Roemberger, R.I.Papendick, Estimating generalized soil water characteristics from texture, Soil Sci. Soc. Am. J. 50 (1986) 1031–1036.10.2136/sssaj1986.03615995005000040039x
W.J.Rawls, D.L.Brakensiek, Estimation of soil water retention and hydraulic properties, in: H.J.Morelseytoux (Ed.), Unsaturated Flow in Hydrologic Modeling––Theory and Practice, Kluwer Academic, Dordrecht, 1989, pp. 275–300.
B.Ghanbarian-Alavijeh, A.M.Liaghat, Evaluation of soil texture data for estimating soil water retention curve, Can. J. Soil Sci. 89 (2009) 461–471.10.4141/cjss08066
Y.Abbasi, B.Ghanbarian-Alavijeh, A.Liaghat, M.Shorafa, Evaluation of pedotransfer functions for estimating soil water retention of saline and saline-alkali soils of Iran, Pedosphere 21 (2011) 230–237.10.1016/S1002-0160(11)60122-7
G.S.Campbell, Soil Physics with BASIC, Transport Models for Soil-Plant System, Elsevier, Amsterdam, 1985.
B.Minasny, A.B.McBratney, Uncertainty analysis for pedotransfer functions, Eur. J. Soil Sci. 53 (2002) 417–429.10.1046/j.1365-2389.2002.00452.x
H.Khodaverdiloo, M.Homaee, Pedotransfer functions of some calcareous soils, in: N.Wöhrle, M.Scheurer (Eds.), Eurosoil 2004, Abstracts and Full Papers, Freiburg, Germany, September 4–12, 10(27) (2004) 1–11.
W.M.Cornelis, J.Ronsyn, M.van Meirvenne, R.Hartmann, Evaluation of pedotransfer functions for predicting the soil moisture retention curve, Soil Sci. Soc. Am. J. 65 (2001) 638–648.10.2136/sssaj2001.653638x
B.Wagner, V.R.Tarnawski, V.Hennings, U.Müller, G.Wessolek, R.Plagge, Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set, Geoderma 102 (2001) 275–297.10.1016/S0016-7061(01)00037-4
M.G.Schaap, F.J.Leij, M.van GenuchtenM.Th., Neural network analysis for hierarchical prediction of soil hydraulic properties, Soil Sci. Soc. Am. J. 62 (1998) 847–855.10.2136/sssaj1998.03615995006200040001x
Y.A.Pachepsky, W.J.Rawls (Eds.), Development of pedotransfer functions in soil hydrology, Development Soil Science Elsevier, Amsterdam, 30, 2004.
A.Nemes, W.J.Rawls, Y.A.Pachepsky, Influence of organic matter on the estimation of saturated hydraulic conductivity, Soil Sci. Soc. Am. J. 69 (2005) 1330–1337.10.2136/sssaj2004.0055
W.J.Rawls, Y.Pachepsky, J.C.Ritchie, T.M.Sobecki, H.Bloodwort, Effect of soil organic carbon on soil water retention, Geoderma, 116 (2003) 61–76.
V.C.Jamison, E.M.Kroth, Available moisture storage capacity in relation to textural composition and organic matter content of several Missouri soils, Soil Sci. Soc. Am. Proc. 22 (1958) 189–192.10.2136/sssaj1958.03615995002200030001x
G.W.Petersen, R.L.Cunningham, R.P.Matelski, Moisture characteristics of Pennsylvania soils: I. Moisture retention as related to texture, Soil Sci. Soc. Am. Proc. 32 (1968) 271–275.10.2136/sssaj1968.03615995003200020031x
W.J.Rawls, D.L.Brakensiek, B.Soni, Agricultural management effects on soil water processes. Part I. Soil water retention and Green–Ampt parameters, Trans. ASAE. 26 (1983) 1747–1752.10.13031/2013.33837
B.Ambroise, D.Reutenauer, D.Viville, Estimating soil water retention properties from mineral and organic fractions of coarse-textured soils in the Vosges mountains of France, in: M.van GenuchtenM.Th., F.J.Leij, L.J.Lund (Eds.), International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, University of California, Riverside, CA, 1992, pp. 453–462.
J.S.Kern, Evaluation of soil water retention models based on basic soil physical properties, Soil Sci. Soc. Am. J. 59 (1995) 1134–1141.10.2136/sssaj1995.03615995005900040027x
N.Romano, A.Santini, Water retention and storage: Field, in: H.J.Dane, G.C.Topp (Eds.), Methods of Soil Analysis, Part 4, Physical Methods, SSSA Book Series N.5, Madison, WI, 2002, pp. 721–738.
A.Costa, J.A.Albuquerque, J.A.de Almeida, A.da Costa, R.V.Luciano, Pedotransfer functions to estimate retention and availability of water in soils of the state of Santa Catarina, Braz. Rev. Bras. Cienc. Solo. 37(4) (2013) 889–910.10.1590/S0100-06832013000400007
B.Dridi, S.Zemmouri, Fonctions de pédotransfert pour les vertisols de la plaine de la Mitidja (Algérie): Recherche de paramètres les plus pertinents pour la rétention en eau (Soil pedotransfer function for the vertisols of the Mitidja plain (Algeria): Search for most suitable parameters for water retention), Biotechnol. Agron. Soc. Environ. 16(2) (2012) 193–201.