Computational electromagnetics; Finite element assembly; High order Whitney element; High performance computing
Résumé :
[en] This study presents an efficient method for the finite element assembly of high order Whitney elements. The authors start by reviewing the classical assembly technique and by highlighting the most time consuming part. Then, they show how this classical approach can be reformulated into a computationally efficient matrix-matrix product. They also address the global orientation problem of the vector valued basis functions. They conclude by presenting numerical results for a three-dimensional wave propagation problem.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Marsic, Nicolas ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Langue du document :
Anglais
Titre :
Efficient finite element assembly of high order Whitney forms
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Vincent, P.E., Jameson, A.: 'Facilitating the adoption of unstructured high-order methods amongst a wider community of fluid dynamicists', Math. Model. Nat. Phenom., 2011, 6, pp. 97-140
Ihlenburg, F., Babuška, I.: 'Finite element solution of the Helmholtz equation with high wave number part I: the h-version of the FEM', Comput. Math. Appl., 1995, 30, (9), pp. 9-37
Ihlenburg, F., Babuška, I.: 'Finite element solution of the Helmholtz equation with high wave number part II: the h-p version of the FEM', SIAM J. Numer. Anal., 1997, 34, (1), pp. 315-358
Webb, J.P., Forghani, B.: 'Hierarchal scalar and vector tetrahedra', IEEE Trans. Magn., 1993, 29, (2), pp. 1495-1498
Yioultsis, T.V., Tsiboukis, T.D.: 'A fully explicit Whitney element-time domain scheme with higher order vector finite elements for three-dimensional high frequency problems', IEEE Trans. Magn., 1998, 34, (5), pp. 3288-3291
Geuzaine, C.: 'High order hybrid finite element schemes for Maxwell's equations taking thin structures and global quantities into account'. PhD thesis, Université de Liège, Belgium, December 2001
Bossavit, A.: 'Generating Whitney forms of polynomial degree one and higher', IEEE Trans. Magn., 2002, 38, pp. 341-344
Zaglmayr, S.: 'High order finite element methods for electromagnetic field computation'. PhD thesis, Johannes Kepler Universität, Austria, August 2006
Hillewaert, K.: 'Exploiting data locality in the DGM discretisation for optimal efficiency', in Kroll, N., Bieler, H., Deconinck, H., Couaillier, V., Ven, H., Sørensen, K. (Eds.): 'ADIGMA - a European initiative on the development of adaptive higher-order variational methods for aerospace applications' (Springer Berlin Heidelberg, 2010), vol. 113 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 11-23
Lambrechts, J.: 'Finite element methods for coastal flows: application to the Great Barrier Reef'. PhD thesis, Université catholique de Louvain, Belgium, March 2011
Blackford, L.S., Demmel, J., Dongarra, J., et al.: 'An updated set of basic linear algebra subprograms (BLAS)', ACM Trans. Math. Softw., 2002, 28, pp. 135-151
Kågström, B., Ling, P., Loan, C.V.: 'GEMM-based level 3 BLAS: high-performance model implementations and performance evaluation benchmark', ACM Trans. Math. Softw., 1998, 24, pp. 268-302
Intel Corporation: 'Reference Manual for Intel Math Kernel Library'
Xianyi, Z., Qian, W., Yunquan, Z.: 'Model-driven level 3 BLAS performance optimization on Loongson 3A processor'. IEEE 18th Int. Conf. on Parallel and Distributed Systems (ICPADS), 2012, December 2012, pp. 684-691
Whaley, R.C., Petitet, A.: 'Minimizing development and maintenance costs in supporting persistently optimized BLAS', Softw., Pract. Exp., 2005, 35, pp. 101-121
Ainsworth, M., Coyle, J.: 'Hierarchic finite element bases on unstructured tetrahedral meshes', Int. J. Numer. Methods Eng., 2003, 58, (14), pp. 2103-2130
Dular, P., Geuzaine, C., Henrotte, F., Legros, W.: 'A general environment for the treatment of discrete problems and its application to the finite element method', IEEE Trans. Magn., 1998, 34, pp. 3395-3398
Amestoy, P.R., Duff, I.S., Koster, J., L'Excellent, J.-Y.: 'A fully asynchronous multifrontal solver using distributed dynamic scheduling', SIAM J. Matrix Anal. Appl., 2001, 23, (1), pp. 15-41
Amestoy, P.R., Guermouche, A., L'Excellent, J.-Y., Pralet, S.: 'Hybrid scheduling for the parallel solution of linear systems', Parallel Comput., 2006, 32, (2), pp. 136-156