Amelung, W., Miltner, A., Zhang, X., and Zech, W.: Fate of microbial residues during litter decomposition as affected by minerals, Soil Sci., 166, 598-606, 2001.
Amelung, W., Brodowski, S., Sandhage-Hofmann, A., and Bol, R.: Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter, Adv. Agron., 100, 155-250, 2008.
Bascomb, C. L.: Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups, J. Soil Sci., 19, 251-268, 1968.
Berhe, A. A., Harden, J. W., Torn, M. S., Kleber, M., Burton, S. D., and Harte, J.: Persistence of soil organic matter in eroding vs. depositional landform positions, J. Geophys. Res., 117, G02019, doi:10.1029/2011JG001790, 2012.
Bodé, S.: Development of a Compund Specific Stable Isotope Method for Amino Sugars as Tracers of Microbial Dynamics in Terrestrial Ecosystems, PhD thesis, Ghent University, Belgium, 206 pp., 2013.
Bodé, S., Denef, K., and Boeckx, P.: Development and evaluation of a high-performance liquid chromatography/isotope ratio mass spectrometry methodology for delta C-13 analyses of amino sugars in soil, Rapid Commun. Mass Sp., 23, 2519-2526, 2009.
Bossuyt, H., Denef, K., Six, J., Frey, S. D., Merckx, R., and Paustian, K.: Influence of microbial populations and residue quality on aggregate stability, Appl. Soil Ecol., 16, 195-208, 2001.
Brahy, V. and Delvaux, B.: Cation exchange resin and test vermiculite to study soil processes in situ in a toposequence of Luvisol and Cambisol on loess, Eur. J. Soil Sci., 52, 397-408, 2001.
Brindley, G.W. and Brown, G.: Crystal Structures of Clay Minerals and Their Identification, Mineralogical Society Monograph no. 5, Mineralogical Society, London, 495 pp., 1980.
Chao, T. T. and Sanzolone, R. F.: Decomposition techniques, J. Geochem. Explor., 44, 65-106, 1992.
Cotrufo, M. F., Wallenstein, M. D., Boot, C., Denef, K., and Paul, E.: The Microbial Efficiency- Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?, Glob. Change Biol., 19, 988-995, 2012.
Cui, J., Li, Z., Liu, Z., Ge, B., Fang, C., Zhou, C., and Tang, B.: Physical and chemical stabilization of soil organic carbon along a 500 year cultived soil chronosequence originating from estuarine wetlands: temporal patterns and land use effects, Agr. Ecosyst. Environ., 196, 10-20, 2014.
Dahlgren, R. A.: Quantification of allophane and imogolite, in: Quantitative methods in soil mineralogy, edited by: Zelazny, L. W. and Amonette, J. E., Soil Science Society of America, Madison, 430-451, 1994.
Denef, K., Six, J., Bossuyt, H., Frey, S. D., Eliott, E. T., Merckx, R., and Pasutian, K.: Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics, Soil Biol. Biochem., 33, 1599-1611, 2001.
Dlugoss, V.: Impacts of Soil Redistribution Processes on Soil Organic Carbon Stocks and Fluxes in a Small Agricultural Catchment, PhD thesis, Geographisches Institut der Universität zu Köln, Köln, 143 pp., 2011.
Doetterl, S., Six, J., VanWesemael, B., and Van Oost, K.: Carbon cycling in eroding landscapes, geomorphic controls on soil organic C pool composition and C stabilization, Glob. Change Biol., 18, 2218-2232, 2012.
Duemig, A., Smittenberg, R., and Koegel-Knabner, I.: Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, 5 Switzerland, Geoderma, 163, 83-94, 2011.
Duemig, A., Haeusler, W., Steffens, M., and Koegel-Knabner, I.: Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo-mineral associations, Geochim. Cosmochim. Ac., 85, 1-18, 2012.
Dungait, J. A. J., Hopkins, D.W., Gregory, A. S., and Whitmore, A. P.: Soil organic matter turnover is governed by accessibility not recalcitrance, Glob. Change Biol., 18, 1781-1796, 2012.
Eusterhues, K., Rumpel, C., and Koegel-Knabner, I.: Organomineral associations in sandy acid forest soils, importance of specific surface area, iron oxides and micropores, Eur. J. Soil Sci., 56, 753-763, 2005.
Eusterhues, K., Wagner, F. E., Haeusler, W., Hanzlik, M., Knicker, H., Totsche, K. U., Koegel-Knabner, I., and Schwertmann, U.: Characterization of ferrihydrite-soil organic matter coprecipitates by X ray diffraction and Mössbauer spectroscopy, Environ. Sci. Technol., 42, 7891-7897, 2008.
Fan, Y., Lei, T., and Cai, Q.: Effects of wetting rate on soil surface strength and aggregate stability, Transactions of the Chinese Society of Agricultural Engineering, 24, 46-50, 2008.
Gibbs, R. J.: The geochemistry of the Amazon River system. Part I. The factors that control the salinity and the composition and concentration of the suspended solids, Bull. Geol. Soc. Am., 78, 1203-1232, 1967.
Glaser, B. and Gross, S.: Compound-specific delta C-13 analysis of individual amino sugars - a tool to quantify timing and amount of soil microbial residue stabilization, Rapid Commun. Mass Sp., 19, 1409-1416, 2005.
Glaser, B., Turrion, M. B., and Alef, K.: Amino sugars and muramic acid - biomarkers for soil microbial community structure analysis, Soil Biol. Biochem., 36, 399-407, 2004.
Goldberg, S.: Interaction of aluminium and iron oxides and clay minerals and their effect on soil physical properties: a review, Commun. Soil Sci. Plan., 20, 1181-1207, 1989.
Guggenberger, G., Frey, S. D., Six, J., Paustian, K., and Elliott, E. T.: Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems, Soil Sci. Soc. Am. J., 63, 1188-1198, 1999.
Harden, J. W., Sharpe, J. M., Parton, W. J., Ojima, D. S., Fries, T. L., Huntington, T. G., and Dabney, S. M.: Dynamic replacement and loss of soil carbon on eroding cropland, Global Biogeochem. Cy., 13, 885-901, 1999.
Helgason, B. I., Konschu, H. J., Bedard-Haughn, A., and Vanden- Bygaart, A. J.: Microbial distribution in an eroded landscape: buried A horizons support abundant and unique communities, Agr. Ecosyst. Environ., 196, 94-102, 2014.
Herbillon, A. J.: Chemical estimation of wheatherable minerals present in the diagnostic horizons of low activity clay soils, in: Proceedings of the eighth international soil classification workshop - Classification, Characterization and Utilization of Oxisols, Part 1 - Papers, edited by: Beinroth, F. H., Camargo, M. N., and Eswaran, H., Rio de Janeiro, 12 to 23 May 1986, 39-48, 1988.
Huang, P. M., Wang, T. S. C., Wang, M. K., Wu, M. H., and Hsu, N. W.: Retention of phenolic acids by noncrystalline hydroxyaluminum and -iron compounds and clay minerals of soils, Soil Sci., 123, 213-219, 1977.
Hoffmann, T., Schlummer, M., Notebaert, B., Verstraeten, G., and Korup, O.: Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe, Global Biogeochem. Cy., 27, 828-835, doi:10.1002/gbc.20071, 2013.
Kaiser, K. and Guggenberger, G.: Mineral surfaces and soil organic matter, Eur. J. Soil Sci., 54, 219-236, 2003.
Kaiser, K. and Zech, W.: Defects in estimation of aluminum in humus complexes of podzolic soils by pyrophosphate extraction, Soil Sci., 161, 452-458, 1996.
Kleber, M.: What is recalcitrant soil organic matter?, Environ. Chem., 7, 320-332, 2010.
Kleber, M., Mikutta, R., Torn, M. S., and Jahn, R.: Poorly crystalline mineral phases protect organic matter in acid subsoil horizons, Eur. J. Soil Sci., 56, 717-725, 2005.
Kodama, A. and Schnitzer, M.: Effects of fulvic acids on the crystallization of aluminum hydroxides, Geoderma, 24, 195-205, 1980.
IRM: Climatogramm for the Period 1961-1990, Station 06447 (Uccle; Belgique), retrieved 28 July 2011, available at: http://www.recordmeteo.com/weather-hi-low/weather-station-duccle-en-6447.html (last access: 25 November 2014), 2011.
Johnson, W. C.: Carbon cycle: sequestration in buried soils, Nat. Geosci., 7, 398-399, 2014.
Kolb, S. E., Fermanisch, K. J., and Dornbush, M. E.: Effect of charchoal 5 quantity on microbial biomass and activity in temperate soils, Soil Sci. Soc. Am. J., 7, 1173-1181, 2009.
Lannoo: Le grand Atlas de Ferraris, Lannoo, 600 pp., 2009.
Lindsay, W. L. (Ed.): Chemical equilibria in soils, The Blackburn Press, West Caldwell, USA, 450 pp., 1979.
Mehra, O. P. and Jackson, M. L.: Iron oxide removal from soils and clays by a dithionite - citrate system buffered with sodium bicarbonate, Clay. Miner., 5, 317-327, 1960.
Mikutta, R., Schaumann, G. E., Gildemeister, D., Bonneville, S., Kramer, M. G., Chadwick, O. A., and Guggenberger, G.: Biogeochemistry of mineral-organic associations across a long-term mineralogical soil gradient (0.3-4100 kyr), Hawaiian Islands, Geochim. Cosmochim. Ac., 73, 234-260, 2009.
Muneer, M. and Oades, J. M.: The role of Ca-organic interactions in soil aggregate stability. III. Mechanisms and models, Aust. J. Soil Res., 27, 411-423, 1989.
Park, J.-H., Meusburger, K., Jang, I., Hojeong, K., and Alewell, C.: Erosion-induced changes in soil biogeochmical and microbiological properties in Swiss Alpine grasslands, Soil Biol. Biochem., 69, 382-392, 2014.
R Development Core Team: R, a Language and Environment for Statistical Computing, R Foundation for Statistical Computing, available at: http://www.r-project.org (last access: 28 July 2014), 2010.
Robert, M. and Tessier, D.: Méthode de préparation des argiles des sols pour des études minéralogiques, Annals Agronomiques, 25, 859-882, 1974 (in French).
Roberts, P., Bol, R., and Jones, D. L.: Free amino sugar reactions in soil in relation to soil carbon and nitrogen cycling, Soil Biol. Biochem., 39, 3081-3092, 2007.
Rommens, T., Verstraeten, G., Poesen, J., Govers, G., Van Rompaey, A., Peeters, I., and Lang, A.: Soil erosion and sediment deposition in the Belgian loess belt during the Holocene, establishing a sediment budget for a small agricultural catchment, Holocene, 15, 1032-1043, 2005.
Salomé, C., Nunan, N., Pouteau, V., Lerch, T. Z., and Chenu, C.: Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms, Glob. Change Biol., 16, 416-426, 2010.
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M., Koegel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and Trumbore, S. E.: Persistence of soil organic matter as an ecosystem property, Nature, 478, 49-56, 2011.
Schuppli, P. A., Ross, G. J., and McKeague, J. A.: The effective removal of suspended materials from pyrophosphate extracts of soils from tropical and temperate regions, Soil Sci. Soc. Am. J., 47, 1026-1032, 1983.
Simpson, R. T., Frey, S. D., Six, J., and Thiet, R. K.: Preferential accumulation of microbial carbon in aggregate structures of notillage soils, Soil Sci. Soc. Am. J., 68, 1249-1255, 2004.
Six, J., Elliott, E. T., Paustian, K., and Doran, J. W.: Aggregation and soil organic matter accumulation in cultivated and native grassland soils, Soil Sci. Soc. Am. J., 62, 1367-1377, 1998.
Six, J., Conant, R. T., Paul, E. A., and Paustian, K.: Stabilization mechanisms of soil organic matter, implications for C-saturation of soils, Plant Soil, 241, 155-176, 2002.
Sollins, P., Homann, P., and Caidwell, B. A.: Stabilization and destabilization of soil organic matter: mechanisms and controls, Geoderma, 74, 65-105, 1996.
Stucki, J. W., Goodman, B. A., and Schwertmann, U.: Iron in Soils and Clay Minerals, Springer, Dordrecht, 893 pp., 1988.
Stuiver, M. and Polach, H. A.: Discussion - reporting of 14C data, Radiocarbon, 19, 355-363, 1977.
Van Oost, K., Verstraeten, G., Doetterl, S., Notebaert, B.,Wiaux, F., Broothaerts, N., and Six, J.: Legacy of human-induced C erosion and burial on soil-atmosphere C exchange, P. Natl. Acad. Sci. USA, 109, 19492-19497, doi:10.1073/pnas.1211162109, 2012.
Van Ranst, E., De Coninck, F., Tavernier, R., and Langohr, R.: Mineralogy in silty to loamy soils of central and high Belgium in respect to autochthonous and allochthonous materials, Bulletin de la Société Belge de Géologie, 91, 27-44, 1982.
von Luetzow, M. and Koegel-Knabner, I.: Response to the concept paper: What is recalcitrant soil organic matter?, by Markus Kleber, Environ. Chem., 57, 333-335, 2010.
von Luetzow, M., Koegel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., and Flessa, H.: Stabilization of organic matter in temperate soils, mechanisms and their relevance under different soil conditions - a review, Eur. J. Soil Sci., 57, 426-445, 2006.
Wang, X., Cammeraat, L. H.,Wang, Z., Zhou, J., Govers, G., and Kalbitz, K.: Stability of organic matter in soils of the Belgian Loess Belt upon erosion and deposition, Eur. J. Soil Sci., 64, 219-228, 2013.
Wang, X., Cammeraat, E. L. H., Cerli, C., and Kalbitz, K.: Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition, Soil Biol. Biochem., 72, 55-65, 2014.
Wang, Z., Govers, G., Steegen, A., Clymans,W., Van den Putte, A., Langhans, C., Merckx, R., and Van Oost, K.: Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area, Geomorphology, 124, 65-74, 2010.
Wang, Z., Van Oost, K., Lang, A., Quine, T., Clymans,W., Merckx, R., Notebaert, B., and Govers, G.: The fate of buried organic car- bon in colluvial soils: a long-term perspective, Biogeosciences, 11, 873-883, doi:10.5194/bg-11-873-2014, 2014.
Wiaux, F., Cornelis, J.-T., Cao, W., Vanclooster, M., and Van Oost, K.: Combined effect of geomorphic and pedogenic processes on the distribution of soil organic carbon quality along an eroding hillslope on loess soil, Geoderma, 214, 36-47, 2014a.
Wiaux, F., Vanclooster, M., Cornelis, J.-T., and Van Oost, K.: Factors controlling soil organic carbon persistence along an eroding hillslope in the loess belt, Soil Biol. Biochem., 77, 187-196, 2014b.
Wouters, L. and Vandenberghe, N.: Géologie de la Campine, Essai de synthèse, ONDRAF, Brussels, 1994.
Xu, X., Trumbore, S. E., Zheng, S., Southon, J. R., McDuffee, K. E., Luttgen, M., and Liu, J. C.: Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision, Nucl. Instrum. Meth. B, 259, 320-329, 2007.
Yu, H., Ding, W., Luo, J., Geng, R., Ghani, A., and Cai, Z.: Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil, Biol. Fert. Soils, 48, 325-336, doi:10.1007/s00374-011-0629-2, 2011.
Yoo, K., Amundson, R., Heimsath, A. M., and Dietrich,W. E.: Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle, Geoderma, 130, 47-65, 2006.