[en] Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light–dark incubations, in addition to sediment–water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air–sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment–water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid–base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid–base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Hagens, M.
Slomp, C. P.
Meysman, F. J. R.
Seitaj, D.
Harlay, J.
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Middelburg, J. J.
Language :
English
Title :
Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bannink, B. A., Van der Meulen, J. H. M., and Nienhuis, P. H.: Lake Grevelingen: from an estuary to a saline lake. An introduction, Netherlands J. Sea Res., 18, 179-190, 1984.
Ben-Yaakov, S.: pH buffering of pore water of recent anoxic marine sediments, Limnol. Oceanogr., 18, 86-94, 1973.
Borges, A. V. and Gypens, N.: Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification, Limnol. Oceanogr., 55, 346-353, 2010.
Brewer, P. G. and Peltzer, E. T.: Limits to marine life, Science, 324, 347-348, 2009.
Burnett, L. E.: The challenges of living in hypoxic and hypercapnic aquatic environments, Integr. Comp. Biol., 37, 633-640, 1997.
Cadée, G. C. and Hegeman, J.: Historical phytoplankton data of the Marsdiep, Hydrobiol. Bull., 24, 111-118, 1991.
Cai, W.-J., Wang, Y., and Hodson, R. E.: Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA, Geochim. Cosmochim. Acta, 62, 473-483, 1998.
Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G.-C.: Acidification of subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4, 766-770, 2011.
Cantoni, C., Luchetta, A., Celio, M., Cozzi, S., Raicich, F., and Catalano, G.: Carbonate system variability in the Gulf of Trieste (North Adriatic Sea), Estuar. Coast. Shelf Sci., 115, 51-62, 2012.
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for marine ecosystems, Science, 321, 926-929, 2008.
Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res. Pt. A, 34, 1733-1743, 1987.
Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds.): Guide to Best Practices for Ocean CO2 Measurements, PICES Special Publication 3, 2007.
Dickson, A. G.: The carbon dioxide system in seawater: equilibrium chemistry and measurements, in: Guide to Best Practices for Ocean Acidification Research and Data Reporting, edited by: Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J.-P., Luxembourg, Publications Office of the European Union, 17-40, 2010.
Dortch, Q.: The interaction between ammonium and nitrate uptake in phytoplankton, Mar. Ecol. Prog. Ser., 61, 183-201, 1990.
Driscoll, C. T., Fuller, R. D., and Schecher, W. D.: The role of organic acids in the acidification of surface waters in the Eastern U.S, Water. Air. Soil Pollut., 43, 21-40, 1989.
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M.: Is ocean acidification an open-ocean syndrome?, Understanding anthropogenic impacts on seawater pH, Estuar. Coast., 36, 221-236, 2013.
Edman, M. and Omstedt, A.: Modeling the dissolved CO2 system in the redox environment of the Baltic Sea, Limnol. Oceanogr., 58, 74-92, 2013.
Egleston, E. S., Sabine, C. L., and Morel, F. M. M.: Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity, Global Biogeochem. Cy., 24, GB1002, doi:10.1029/2008GB003407, 2010.
Eilers, P. H. C. and Peeters, J. C. H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton, Ecol. Modell., 42, 199-215, 1988.
Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., Krembs, C., and Maloy, C.: The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary, Estuar. Coast. Shelf Sci., 88, 442-449, 2010.
Feistel, R.: A Gibbs function for seawater thermodynamics for -6 to 80 °C and salinity up to 120gkg-1, Deep Sea Res. Pt. I, 55, 1639-1671, 2008.
Frankignoulle, M.: A complete set of buffer factors for acid/base CO2 system in seawater, J. Mar. Syst., 5, 111-118, 1994.
Frankignoulle, M. and Distèche, A.: CO2 chemistry in the water column above a Posidonia seagrass bed and related air-sea exchanges, Oceanol. Acta, 7, 209-219, 1984.
Gazeau, F., Borges, A., Barrón, C., Duarte, C., Iversen, N., Middelburg, J., Delille, B., Pizay, M., Frankignoulle, M., and Gattuso, J.: Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods, Mar. Ecol. Prog. Ser., 301, 23-41, 2005a.
Gazeau, F., Gattuso, J.-P., Middelburg, J. J., Brion, N., Schiettecatte, L.-S., Frankignoulle, M., and Borges, A. V.: Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary), Estuaries, 28, 868-883, 2005b.
Hagens, M., Hunter, K. A., Liss, P. S., and Middelburg, J. J.: Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition, Geophys. Res. Lett., 41, 935-941, 2014.
Hernández-Ayon, J. M., Zirino, A., Dickson, A. G., Camiro-Vargas, T., and Valenzuela, E.: Estimating the contribution of organic bases from microalgae to the titration alkalinity in coastal seawaters, Limnol. Oceanogr. Methods, 5, 225-232, 2007.
Hofmann, A. F., Meysman, F. J. R., Soetaert, K., and Middelburg, J. J.: A step-by-step procedure for pH model construction in aquatic systems, Biogeosciences, 5, 227-251, doi:10.5194/bg-5-227-2008, 2008.
Hofmann, A. F., Middelburg, J. J., Soetaert, K., and Meysman, F. J. R.: pH modelling in aquatic systems with time-variable acid-base dissociation constants applied to the turbid, tidal Scheldt estuary, Biogeosciences, 6, 1539-1561, doi:10.5194/bg-6-1539-2009, 2009.
Hofmann, A. F., Middelburg, J. J., Soetaert, K., Wolf-Gladrow, D. A., and Meysman, F. J. R.: Proton cycling, buffering, and reaction stoichiometry in natural waters, Mar. Chem., 121, 246-255, 2010a.
Hofmann, A. F., Soetaert, K., Middelburg, J. J., and Meysman, F. J. R.: AquaEnv?: An aquatic acid-base modelling environment in R, Aquat. Geochem., 16, 507-546, 2010b.
Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R.: Highfrequency dynamics of ocean pH: a multi-ecosystem comparison, PLoS One, 6, e28983, doi:10.1371/journal.pone.0028983, 2011.
Hoppe, C. J. M., Langer, G., Rokitta, S. D., Wolf-Gladrow, D. A., and Rost, B.: Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies, Biogeosciences, 9, 2401-2405, doi:10.5194/bg-9-2401-2012, 2012.
Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., and Billen, G.: Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems, Front. Ecol. Environ., 9, 18-26, 2011.
Jury, C. P., Thomas, F. I. M., Atkinson, M. J., and Toonen, R. J.: Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change, Water, 5, 1303-1325, 2013.
Kim, H.-C. and Lee, K.: Significant contribution of dissolved organic matter to seawater alkalinity, Geophys. Res. Lett., 36, L20603, doi:10.1029/2009GL040271, 2009.
Kim, H.-C., Lee, K., and Choi, W.: Contribution of phytoplankton and bacterial cells to the measured alkalinity of seawater, Limnol. Oceanogr., 51, 331-338, 2006.
Knap, A. H., Michaels, A. F., and Close, A.: The JGOFS Protocols, Intergovernmental Oceanographic Commission, 1994.
Koeve, W. and Oschlies, A.: Potential impact of DOM accumulation on fCO2 and carbonate ion computations in ocean acidification experiments, Biogeosciences, 9, 3787-3798, doi:10.5194/bg-9-3787-2012, 2012.
Lancelot, C., Gypens, N., Billen, G., Garnier, J., and Roubeix, V.: Testing an integrated river-ocean mathematical tool for linking marine eutrophication to land use: The Phaeocystis-dominated Belgian coastal zone (Southern North Sea) over the past 50 years, J. Mar. Syst., 64, 216-228, 2007.
Lee, D. Y., Owens, M. S., Doherty, M., Eggleston, E. M., Hewson, I., Crump, B. C., and Cornwell, J. C.: The effects of oxygen transition on community respiration and potential chemoautotrophic production in a seasonally stratified anoxic estuary, Estuar. Coast., 38, 104-117, 2015.
MacIsaac, J. J. and Dugdale, R. C.: Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea, Deep Sea Res. Oceanogr. Abstr., 19, 209-232, 1972.
Malkin, S. Y., Rao, A. M., Seitaj, D., Vasquez-Cardenas, D., Zetsche, E.-M., Hidalgo-Martinez, S., Boschker, H. T., and Meysman, F. J.: Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor., ISME J., 8, 1843-1854, 2014.
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M.: Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897-907, 1973.
Meijers, E. and Groot, S.: Deltamodel - hulpmiddel ter ondersteuning van het beheer en beleid van de zuidwestelijke Delta, Delft, Netherlands., 2007.
Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W., Hansen, H. P., and Körtzinger, A.: Future ocean acidification will be amplified by hypoxia in coastal habitats, Mar. Biol., 160, 1875-1888, 2013.
Middelburg, J. J. and Nieuwenhuize, J.: Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary, Mar. Ecol. Prog. Ser., 203, 13-21, 2000.
Middelburg, J. J. and Herman, P. M. J.: Organic matter processing in tidal estuaries, Mar. Chem., 106, 127-147, 2007.
Morel, F. M. M. and Hering, J. G.: Principles and Applications of Aquatic Chemistry, First Edit., Wiley-Interscience, 1993.
Mucci, A., Starr, M., Gilbert, D., and Sundby, B.: Acidification of Lower St. Lawrence Estuary bottom waters, Atmos.-Oc., 49, 206-218, 2011.
Muller, F. L. L. and Bleie, B.: Estimating the organic acid contribution to coastal seawater alkalinity by potentiometric titrations in a closed cell, Anal. Chim. Acta, 619, 183-91, 2008.
Nienhuis, P. H.: An ecosystem study in Lake Grevelingen, a former estuary in the SW Netherlands, Kieler Meeresforschungen. Sonderh., 4, 247-255, 1978.
Nienhuis, P. H. and Huisin't Veld, J. C.: Grevelingen: from an estuary to a saline lake, Water Sci. Technol., 16, 27-50, 1984.
Nixon, S. W.: Coastal marine eutrophication: a definition, social causes, and future concerns, Ophelia, 41, 199-219, 1995.
Nolte, A., Troost, T., de Boer, G., Spiteri, C., and van Wesenbeeck, B.: Verkenning oplossingsrichtingen voor een betere waterkwaliteit en ecologische toestand van het Grevelingenmeer, Delft, Netherlands, 2008.
Oliver, B. G., Thurman, E. M., and Malcolm, R. L.: The contribution of humic substances to the acidity of colored natural waters, Geochim. Cosmochim. Acta, 47, 2031-2035, 1983.
Omstedt, A., Gustafsson, E., and Wesslander, K.: Modelling the uptake and release of carbon dioxide in the Baltic Sea surface water, Cont. Shelf Res., 29, 870-885, 2009.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 681-686, 2005.
Peperzak, L. and Poelman, M.: Mass mussel mortality in The Netherlands after a bloom of Phaeocystis globosa (prymnesiophyceae), J. Sea Res., 60, 220-222, 2008.
Philippart, C. J. M., Beukema, J. J., Cadée, G. C., Dekker, R., Goedhart, P. W., van Iperen, J. M., Leopold, M. F., and Herman, P. M. J.: Impacts of nutrient reduction on coastal communities, Ecosystems, 10, 96-119, 2007.
Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO2 system calculations, Oak Ridge, Tennessee, USA, 2006.
Pieters, J. P. F., Bannink, B. A., and van de Kamer, J. P. G.: Een mathematisch model van de chlorideen zuurstofhuishouding van het Grevelingenmeer tijdens de uitwisseling met zeewater, Middelburg, Netherland, 1985.
Provoost, P., van Heuven, S., Soetaert, K., Laane, R. W. P. M., and Middelburg, J. J.: Seasonal and long-term changes in pH in the Dutch coastal zone, Biogeosciences, 7, 3869-3878, doi:10.5194/bg-7-3869-2010, 2010.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of organisms on the composition of sea-water, in: The Composition of Seawater. Comparative and Descriptive Oceanography, edited by: Hill, M. N., Interscience Publishers, New York, 26-77, 1963.
Regnier, P., Wollast, R., and Steefel, C. I.: Long-term fluxes of reactive species in macrotidal estuaries: Estimates from a fully transient, multicomponent reaction-transport model, Mar. Chem., 58, 127-145, 1997.
Revelle, R. and Suess, H. E.: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades, Tellus, 9, 18-27, 1957.
Riley, G. A.: Plankton studies. II. The western north Atlantic, May-June 1939, J. Mar. Res., 2, 145-162, 1939.
Sayama, M., Risgaard-Petersen, N., Nielsen, L. P., Fossing, H., and Christensen, P. B.: Impact of bacterial NO-3 transport on sediment biogeochemistry, Appl. Environ. Microbiol., 71, 7575-7577, 2005.
Schulz, K. G. and Riebesell, U.: Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon dioxide, Mar. Biol., 160, 1889-1899, 2013.
Seitaj, D., Schauer, R., Sulu-Gambari, F., Malkin, S. Y., Hidalgo Martinez, S., Slomp, C. P., and Meysman, F. J. R.: Temporal succession of cryptic sulphur cycling in a seasonally hypoxic basin, in preparation, 2015a.
Seitaj, D., Sulu-Gambari, F., Malkin, S. Y., Burdorf, L., Slomp, C. P., and Meysman, F. J. R.: Sediment mineralization and benthic oxygen dynamics in a seasonally hypoxic basin, in preparation, 2015b.
Shadwick, E. H., Trull, T. W., Thomas, H., and Gibson, J. A. E.: Vulnerability of polar oceans to anthropogenic acidification: comparison of Arctic and Antarctic seasonal cycles., Sci. Rep., 3, 2339, doi:10.1038/srep02339, 2013.
Shaw, E. C., McNeil, B. I., Tilbrook, B., Matear, R., and Bates, M. L.: Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions, Glob. Chang. Biol., 19, 1632-1641, 2013.
Simpson, J. H.: The shelf-sea fronts: implications of their existence and behaviour, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 302, 531-543, 1981.
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., and Greenwood, J.: The effect of biogeochemical processes on pH, Mar. Chem., 105, 30-51, 2007.
Strickland, J. D. and Parsons, T. R.: A Practical Handbook of Seawater Analysis, 2nd Edition, Bulletin 167, Fisheries Research Board of Canada, Ottawa, Canada, 1972.
Stumm, W. and Morgan, J. J.: Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd edition, John Wiley & Sons, Inc., 1996.
Sullivan, T., Byrne, C., Harman, L., Davenport, J., McAllen, R., and Regan, F.: Determination of spatial and temporal variability of pH and dissolved oxygen concentrations in a seasonally hypoxic semi-enclosed marine basin using continuous monitoring, Anal. Methods, 6, 5489-5497, 2014.
Sunda, W. G. and Cai, W.-J.: Eutrophication induced CO2- acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric pCO2, Environ. Sci. Technol., 46, 10651-10659, 2012.
Sundquist, E. T., Plummer, L. N., and Wigley, T. M.: Carbon dioxide in the ocean surface: the homogeneous buffer factor, Science, 204, 1203-1205, 1979.
Taguchi, F. and Fujiwara, T.: Carbon dioxide stored and acidified low oxygen bottom waters in coastal seas, Japan, Estuar. Coast. Shelf Sci., 86, 429-433, 2010.
Thomas, H., Prowe, A. E. F., van Heuven, S., Bozec, Y., de Baar, H. J. W., Schiettecatte, L.-S., Suykens, K., Koné, M., Borges, A. V., Lima, I. D., and Doney, S. C.: Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean, Global Biogeochem. Cycles, 21, GB4001, doi:10.1029/2006GB002825, 2007.
Verschuur, G. L.: Transparency measurements in Garner Lake, Tennessee: the relationship between Secchi depth and solar altitude and a suggestion for normalization of Secchi depth data, Lake Reserv. Manag., 13, 142-153, 1997.
Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., and Gobler, C. J.: Coastal ocean acidification: The other eutrophication problem, Estuar. Coast. Shelf Sci., 148, 1-13, 2014.
Wang, B., Chen, J., Jin, H., Li, H., and Xu, J.: Inorganic carbon parameters responding to summer hypoxia outside the Changjiang Estuary and the related implications, J. Ocean Univ. China, 12, 568-576, 2013.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373-7382, doi:10.1029/92JC00188, 1992.
Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Mar. Chem., 2, 203-215, 1974.
Weiss, R. F.: Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography, J. Chromatogr. Sci., 19, 611-616, 1981.
Wetsteyn, L. P. M. J.: Grevelingenmeer: meer kwetsbaar?, Lelystad, Netherlands, 2011.
Wetsteyn, L. P. M. J. and Kromkamp, J. C.: Turbidity, nutrients and phytoplankton primary production in the Oosterschelde (The Netherlands) before, during and after a large-scale coastal engineering project (1980-1990), Hydrobiologia, 282/283, 61-78, 1994.
Wootton, J. T. and Pfister, C. A.: Carbon system measurements and potential climatic drivers at a site of rapidly declining ocean pH, PLoS One, 7, e53396, doi:10.1371/journal.pone.0053396, 2012.
Yates, K. K., Dufore, C., Smiley, N., Jackson, C., and Halley, R. B.: Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay, Mar. Chem., 104, 110-124, 2007.
Zhai, W., Zhao, H., Zheng, N., and Xu, Y.: Coastal acidification in summer bottom oxygen-depleted waters in northwestern-northern Bohai Sea from June to August in 2011, Chinese Sci. Bull., 57, 1062-1068, 2012.
Zhang, J.-Z.: The use of pH and buffer intensity to quantify the carbon cycle in the ocean, Mar. Chem., 70, 121-131, 2000.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.