nanoantenna; surface plasmon resonance; two photon luminescence
Abstract :
[en] Metallic nanorod antennas can be considered as an analogue to classical half-wave dipole antennas, constituting an important tool for manipulating linear and nonlinear lightmatter interactions in nanoscale volumes. Using two-photon luminescence (TPL) scanning laser microscopy, we investigate such optical antennas beyond their fundamental dipole mode.
The antenna mode dispersion is extracted from the nonlinear TPL measurement and reveals a TPL process that is dominated by plasmon-induced enhancement of the two photon absorption in the metal. Additionally, a clear signature of the mode parity is observed in the TPL images. TPL maxima are observed outside the antenna boundaries for even parity modes, whereas they are located inside for odd modes. It is concluded that for even modes the two-photon
luminescence emission is strongly mediated by retardation of the excitation field, a consequence of their zero net-dipole moment. This selective excitation of different mode parities is highly relevant for nanoscale enhanced nonlinear optics, as well as plasmonic nanosensor applications and tuning of radiative properties of quantum emitters.
Disciplines :
Physics
Author, co-author :
Verellen, Niels; Katholieke Universiteit Leuven - KUL
Denkova, Denitza; Katholieke Universiteit Leuven - KUL
De Clercq, Ben; Universiteit Hasselt - UH
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Ameloot, Marcel; Universiteit Hasselt - UH
Van Dorpe, Pol; Katholieke Universiteit Leuven - KUL
Moshchalkov, Victor; Katholieke Universiteit Leuven - KUL
Language :
English
Title :
Two-Photon Luminescence of Gold Nanorods Mediated by Higher Order Plasmon Modes
Publication date :
23 February 2015
Journal title :
ACS Photonics
eISSN :
2330-4022
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R.; van Hulst, N. F. Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna Science 2010, 329, 930-933
Valev, V. K. Nanostripe Length Dependence of Plasmon-Induced Material Deformations Opt. Lett. 2013, 38, 2256-2258
Denkova, D.; Verellen, N.; Silhanek, A. V.; Van Dorpe, P.; Moshchalkov, V. V. Lateral Magnetic Near-Field Imaging of Plasmonic Nanoantennas with Increasing Complexity Small 2014, 10, 1959-1966
Kosako, T.; Kadoya, Y.; Hofmann, H. F. Directional Control of Light by a Nano-Optical Yagi-Uda Antenna Nat. Photonics 2010, 4, 312-315
Toma, A.; Das, G.; Chirumamilla, M.; Saeed, A.; Zaccaria, R. P.; Razzari, L.; Leoncini, M.; Liberale, C.; Angelis, F. D.; Fabrizio, E. D. Fabrication and Characterization of a Nanoantenna-Based Raman Device for Ultrasensitive Spectroscopic Applications Microelectron. Eng. 2012, 98, 424-427
Tian, L.; Chen, E.; Gandra, N.; Abbas, A.; Singamaneni, S. Gold Nanorods as Plasmonic Nanotransducers: Distance-Dependent Refractive Index Sensitivity Langmuir 2012, 28, 17435-17442
Brinks, D.; Castro-Lopez, M.; Hildner, R.; van Hulst, N. F. Plasmonic Antennas as Design Elements for Coherent Ultrafast Nanophotonics Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 18386-18390
Hanke, T.; Cesar, J.; Knittel, V.; Trügler, A.; Hohenester, U.; Leitenstorfer, A.; Bratschitsch, R. Tailoring Spatiotemporal Light Confinement in Single Plasmonic Nanoantennas Nano Lett. 2012, 12, 992-996
Zhang, S.; Genov, D. A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-Induced Transparency in Metamaterials Phys. Rev. Lett. 2008, 101, 047401
Liu, N.; Langguth, L.; Weiss, T.; Kastel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmonic Analogue of Electromagnetically Induced Transparency at the Drude Damping Limit Nat. Mater. 2009, 8, 758-762
Huang, J.-S.; Feichtner, T.; Biagioni, P.; Hecht, B. Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit Nano Lett. 2009, 9, 1897-1902
Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with Active Optical Antennas Science 2011, 332, 702-704
Harutyunyan, H.; Volpe, G.; Quidant, R.; Novotny, L. Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas Phys. Rev. Lett. 2012, 108, 217403
Maksymov, I. S.; Miroshnichenko, A. E.; Kivshar, Y. S. Cascaded Four-Wave Mixing in Tapered Plasmonic Nanoantenna Opt. Lett. 2013, 38, 79-81
Kim, S.; Jin, J.; Kim, Y.-J.; Park, I.-Y.; Kim, Y.; Kim, S.-W. High-Harmonic Generation by Resonant Plasmon Field Enhancement Nature 2008, 453, 757-760
Abb, M.; Albella, P.; Aizpurua, J.; Muskens, O. L. All-Optical Control of a Single Plasmonic Nanoantenna-ITO Hybrid Nano Lett. 2011, 11, 2457-2463
Ko, K. D.; Kumar, A.; Fung, K. H.; Ambekar, R.; Liu, G. L.; Fang, N. X.; Toussaint, K. C. Nonlinear Optical Response from Arrays of Au Bowtie Nanoantennas Nano Lett. 2011, 11, 61-65
Taminiau, T. H.; Stefani, F. D.; van Hulst, N. F. Optical Nanorod Antennas Modeled as Cavities for Dipolar Emitters: Evolution of Sub- and Super-Radiant Modes Nano Lett. 2011, 11, 1020-1024
Curto, A. G.; Taminiau, T. H.; Volpe, G.; Kreuzer, M. P.; Quidant, R.; van Hulst, N. F. Multipolar Radiation of Quantum Emitters with Nanowire Optical Antennas Nat. Commun. 2013, 4, 1750
Vercruysse, D.; Sonnefraud, Y.; Verellen, N.; Fuchs, F. B.; Di Martino, G.; Lagae, L.; Moshchalkov, V. V.; Maier, S. A.; Van Dorpe, P. Unidirectional Side Scattering of Light by a Single-Element Nanoantenna Nano Lett. 2013, 13, 3843-3849
Vercruysse, D.; Zheng, X.; Sonnefraud, Y.; Verellen, N.; Di Martino, G.; Lagae, L.; Vandenbosch, G. A. E.; Moshchalkov, V. V.; Maier, S. A.; Van Dorpe, P. Directional Fluorescence Emission by Individual V-Antennas Explained by Mode Expansion ACS Nano 2014, 8, 8232-8241
López-Tejeira, F.; Paniagua-Domínguez, R.; Rodríguez-Oliveros, R.; Sánchez-Gil, J. A. Fano-Like Interference of Plasmon Resonances at a Single Rod-Shaped Nanoantenna New J. Phys. 2012, 14, 023035
López-Tejeira, F.; Paniagua-Domínguez, R.; Sánchez-Gil, J. A. High-Performance Nanosensors Based on Plasmonic Fano-Like Interference: Probing Refractive Index with Individual Nanorice and Nanobelts ACS Nano 2012, 6, 8989-8996
Verellen, N.; López-Tejeira, F.; Paniagua-Domínguez, R.; Vercruysse, D.; Denkova, D.; Lagae, L.; Van Dorpe, P.; Moshchalkov, V. V.; Sánchez-Gil, J. A. Mode Parity-Controlled Fano- and Lorentz-Like Line Shapes Arising in Plasmonic Nanorods Nano Lett. 2014, 14, 2322-2329
Valev, V. K. Characterization of Nanostructured Plasmonic Surfaces with Second Harmonic Generation Langmuir 2012, 28, 15454-15471
Beversluis, M. R.; Bouhelier, A.; Novotny, L. Continuum Generation from Single Gold Nanostructures through Near-Field Mediated Intraband Transitions Phys. Rev. B 2003, 68, 115433
Schuck, P. J.; Fromm, D. P.; Sundaramurthy, A.; Kino, G. S.; Moerner, W. E. Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas Phys. Rev. Lett. 2005, 94, 017402
Wang, H.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J.-X. In Vitro and In Vivo Two-Photon Luminescence Imaging of Single Gold Nanorods Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 15752-15756
Wang, T.; Halaney, D.; Ho, D.; Feldman, M. D.; Milner, T. E. Two-Photon Luminescence Properties of Gold Nanorods Biomed. Opt. Express 2013, 4, 584-595
Mühlschlegel, P.; Eisler, H.-J.; Martin, O. J. F.; Hecht, B.; Pohl, D. W. Resonant Optical Antennas Science 2005, 308, 1607-1609
Ghenuche, P.; Cherukulappurath, S.; Taminiau, T. H.; van Hulst, N. F.; Quidant, R. Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas Phys. Rev. Lett. 2008, 101, 116805
Huang, J.-S.; Kern, J.; Geisler, P.; Weinmann, P.; Kamp, M.; Forchel, A.; Biagioni, P.; Hecht, B. Mode Imaging and Selection in Strongly Coupled Nanoantennas Nano Lett. 2010, 10, 2105-2110
Ghenuche, P.; Cherukulappurath, S.; Quidant, R. Mode Mapping of Plasmonic Stars Using TPL Microscopy New J. Phys. 2008, 10, 105013
Viarbitskaya, S.; Teulle, A.; Marty, R.; Sharma, J.; Girard, C.; Arbouet, A.; Dujardin, E. Tailoring and Imaging the Plasmonic Local Density of States in Crystalline Nanoprisms Nat. Mater. 2013, 12, 426-432
Imura, K.; Ueno, K.; Misawa, H.; Okamoto, H. Optical Field Imaging of Elongated Rectangular Nanovoids in Gold Thin Film J. Phys. Chem. C 2013, 117, 2449-2454
Volpe, G.; Cherukulappurath, S.; Juanola Parramon, R.; Molina-Terriza, G.; Quidant, R. Controlling the Optical Near Field of Nanoantennas with Spatial Phase-Shaped Beams Nano Lett. 2009, 9, 3608-3611
Castro-Lopez, M.; Brinks, D.; Sapienza, R.; van Hulst, N. F. Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas Nano Lett. 2011, 11, 4674-4678
Dorfmüller, J.; Vogelgesang, R.; Khunsin, W.; Rockstuhl, C.; Etrich, C.; Kern, K. Plasmonic Nanowire Antennas: Experiment, Simulation, and Theory Nano Lett. 2010, 10, 3596-3603
Denkova, D.; Verellen, N.; Silhanek, A. V.; Valev, V. K.; Van Dorpe, P.; Moshchalkov, V. V. Mapping Magnetic Near-Field Distributions of Plasmonic Nanoantennas ACS Nano 2013, 7, 3168-3176
Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.; Moshchalkov, V. V.; Van Dorpe, P.; Nordlander, P.; Maier, S. A. Fano Resonances in Individual Coherent Plasmonic Nanocavities Nano Lett. 2009, 9, 1663-1667
Bouhelier, A.; Bachelot, R.; Lerondel, G.; Kostcheev, S.; Royer, P.; Wiederrecht, G. P. Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods Phys. Rev. Lett. 2005, 95, 267405
Lumerical Solutions; http://www.lumerical.com (accessed December 3, 2014).
Johnson, P. B.; Christy, R. W. Optical Constants of the Noble Metals Phys. Rev. B 1972, 6, 4370-4379
Imura, K.; Nagahara, T.; Okamoto, H. Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes J. Phys. Chem. B 2005, 109, 13214-13220
Biagioni, P.; Celebrano, M.; Savoini, M.; Grancini, G.; Brida, D.; Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Duò, L.; Hecht, B.; Cerullo, G.; Finazzi, M. Dependence of the Two-Photon Photoluminescence Yield of Gold Nanostructures on the Laser Pulse Duration Phys. Rev. B 2009, 80, 045411
Roaf, D. J. The Fermi Surfaces of Copper, Silver and Gold II. Calculation of the Fermi Surfaces Philos. Trans. R. Soc. London 1962, 255, 135-152
Knittel, V.; Fischer, M. P.; de Roo, T.; Mecking, S.; Leitenstorfer, A.; Brida, D. Nonlinear Photoluminescence Spectrum of Single Gold Nanostructures ACS Nano 2015, 9, 894-900
Verellen, N.; Van Dorpe, P.; Vercruysse, D.; Vandenbosch, G. A. E.; Moshchalkov, V. V. Dark and Bright Localized Surface Plasmons in Nanocrosses Opt. Express 2011, 19, 11034-11051
Novotny, L. Effective Wavelength Scaling for Optical Antennas Phys. Rev. Lett. 2007, 98, 266802
Neubrech, F.; Weber, D.; Lovrincic, R.; Pucci, A.; Lopes, M.; Toury, T.; de La Chapelle, M. L. Resonances of Individual Lithographic Gold Nanowires in the Infrared Appl. Phys. Lett. 2008, 93, 163105
Olmon, R. L.; Krenz, P. M.; Jones, A. C.; Boreman, G. D.; Raschke, M. B. Near-Field Imaging of Optical Antenna Modes in the Mid-Infrared Opt. Express 2008, 16, 20295-20305
Imura, K.; Okamoto, H. Properties of Photoluminescence from Single Gold Nanorods Induced by Near-Field Two-Photon Excitation J. Chem. Phys. C 2009, 113, 11756-11759
Imura, K.; Nagahara, T.; Okamoto, H. Near-Field Optical Imaging of Plasmon Modes in Gold Nanorods J. Chem. Phys. 2005, 122, 154701
Vesseur, E. J. R.; de Waele, R.; Kuttge, M.; Polman, A. Direct Observation of Plasmonic Modes in Au Nanowires Using High-Resolution Cathodoluminescence Spectroscopy Nano Lett. 2007, 7, 2843-2846
Schider, G.; Krenn, J. R.; Hohenau, A.; Ditlbacher, H.; Leitner, A.; Aussenegg, F. R.; Schaich, W. L.; Puscasu, I.; Monacelli, B.; Boreman, G. Plasmon Dispersion Relation of Au and Ag Nanowires Phys. Rev. B 2003, 68, 155427
Teulle, A.; Marty, R.; Viarbitskaya, S.; Arbouet, A.; Dujardin, E.; Girard, C.; des Francs, G. C. Scanning Optical Microscopy Modeling in Nanoplasmonics J. Opt. Soc. Am. B 2012, 29, 2431-2437
Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.; Aussenegg, F. R.; Krenn, J. R. Silver Nanowires as Surface Plasmon Resonators Phys. Rev. Lett. 2005, 95, 257403